Teras Puthlio School Attrition Study 2011-18

Children First

DRA
Inside
High School Attrition Rate Drops by Two Percentage Points from Previous Year. 3
Attrition Rate Reached Lowest Value but Trend Needs to Quicken to Make a Difference 17
Three Decades of Groundbreaking Dropout Research - Reflectons by Dr. Robledo Montecel 21
6 Policies that Lead to Higher Dropout Rates 26
Timeline for the Class of 2018 28
Infographic: Texas public schools are losing I out of 5 students 35
College Bound and Determined 36
Texas' Large Economically Disadvantaged Student Population Hit Hard by High School Attrition 37
TEA-Reported Texas School Completion and Dropout Data for 2016-17

- A Virtual Standstill. 45
Texas Ranks Fifth Nationally in On-Time Graduation Rate 50
Quality School Holding Power Checklist 55
A Model for Success 56
Taking Action to Hold on to Students 57
Uncompromising Expectations for Graduating All Students. 58
What We Have Learned 59
Types of Dropout Data Defined 60

Publication offices:
5815 Callaghan Road, Suite ior
San Antonio, Texas 78228
210-444-1710; Fax 210-444-1714 www.idra.org | contact@idra.org

María Robledo Montecel, Ph.D.
IDRA President and CEO
Executive Editor
Christie L. Goodman, APR
IDRA Director of Communications
Production Editor

Connect with IDRA Online

Texas Public School Attrition Study, 2017-18 High School Attrition Rate Drops by Two Percentage Points from Previous Year
 \author{ by Roy L. Johnson, M.S.

}

The high school attrition rate in Texas dropped by 2 percentage points since last year, suggesting that school holding power in Texas is slowly improving. Butpersistentgaps among major raceethnicity groups continue. IDRA's latest attrition study found that 22 percent of the freshman class of 2014-15 left school prior to graduating in the 2017-18 school year.

After returning to 24 percent in 2016-17 following a I percentage point increase from 2014-15 to 201516, the overall state attrition rate declined from 24 percent in 2016-17 to 22 percent in 2017-18.

The overall attrition rate broke through the 24 percent to 25 percent range during the period of 2012-I3 to 2016-17 to reach the lowest attrition rate in the 33 years of attrition studies reported by IDRA. This pattern was not unexpected as IDRA's forecast models predicted that the attrition rate would increase slightly before resuming its downward trajectory (see story on Page 17).

If we are to both invest in our children's future and meet the demands of a job market that increasingly requires employees who are college educated, we must have schools be centers of college readiness. We cannot do so if we are not at the very least ensuring students graduate from high school. This is why IDRA takes the pulse of Texas high school attrition each year.

Since creating the first comprehensive study of school dropouts in Texas in 1985-86, IDRA has conducted attrition analyses to assess schools' abilities to hold on to their students until they graduate. This year's study is the 33 rd in a series of annual reports on trends in dropout and attrition rates in Texas public schools. The 2017-18 study builds on a series of studies by IDRA that track the number and percent of students in Texas who are lost from public school enrollment prior to graduation.

The statewide attrition rate was the lowest it's ever been, but Texas is still losing more than one in five students.

94,767 Total Students Lost

> Schools are twice as likely to lose Hispanic students and Black students before they graduate.

> Schools are still losing 1 in 4 Black students and more than 1 in 4 Hispanic students.

Texas public schools are losing i out of 5 students

It has taken over three decades to improve by II percentage points: from 33 percent to 22 percent

Intercultural Development Research Association, 2018

This statewide attrition rate of 22 percent is II percentage points lower than the initial rate of 33 percent found in IDRA'slandmark 1985-86 study. The rate is 33 percent lower than the $1985-86$ rate.

Key findings of the latest study include the following.

- Texas public schools are failing to graduate one out of every five students. One out of every five students (22 percent) from the freshman class of 2014-I5 left school prior to graduating with a high school diploma.
- A total of $\mathbf{9 4 , 7 6 7}$ students from the 2014-15 freshman class were lost from public high school enrollment in 2017-18 compared to 86,276 in 1985-86.
- For the class of 2018, Hispanic students and Black students were two times more likely to leave school without graduating than White students.
- In three decades, the overall attrition rate declined from 33 percent in $1985-86$ to 22 percent in 2017-18, a 33 percent improvement.
- The overall attrition rate has been less than 30 percent in the last nine study years.
- Since 1985-86, attrition rates of Hispanic students declined by 40 percent (from 45 percent to 27 percent). Attrition rates of Black students declined by 29 percent (from 34 percent to 24 percent). Attrition rates of White students declined by 52 percent (from 27 percent to I3 percent).
- From the initial study to the present, the attrition gap between Black and Whites students has grown from 7 percentage points to ir percentage points, a 57 percent increase.
- The attrition gap between Hispanic and White students has narrowed from 18 percentage points to 14 percentage points, 22 percent reduction.
- Since 1986, Texas schools have lost a cumulative total of more than 3.8 million students from public high school enrollment.
- The attrition rates for males have been higher than those of females. In the class of 2017-18, males were I. 3 times more likely to leave school before graduation than females.
- From 1985-86 to 2017-18, attrition rates of male students declined by 29 percent (from 35 percent to 25 percent), while the attrition rates of female students declined by 41 percent (from 32 percent to ig percent).

This study builds on the series ofstudies that began when IDRA conducted the first comprehensive study of school dropouts in Texas which was published in Octoberı986(Cárdenas, etal., 1986).

The study in I986, entitled Texas School Dropout Survey Project, was conducted under contract with the Texas Education Agency (TEA) and the then Texas DepartmentofCommunity Affairs. That first study found that 86,276 students had notgraduated from Texas public schools, costing the state $\$ 17$ billion in foregone income, lost tax revenues and increased job training, welfare, unemployment and criminal justice costs (Cárdenas, et al., 1986).

Attrition Rates in Texas Public Schools by Year, 1985-86 to 2017-18				
Year	Black	White	Hispanic	Total
1985-86	34	27	45	33
1986-87	38	26	46	34
1987-88	39	24	49	33
1988-89	37	20	48	$3{ }^{1}$
1989-90	38	19	48	$3{ }^{1}$
1990-91	37	19	47	$3{ }^{1}$
1991-92	39	22	48	34
1992-93	43	25	49	36
1993-94	47	28	50	39
1994-95	50	30	51	40
1995-96	51	31	53	42
1996-97	51	32	54	43
1997-98	49	31	53	42
1998-99	48	31	53	42
1999-00	47	28	52	40
2000-01	46	27	52	40
2001-02	46	26	51	39
2002-03	45	24	50	38
2003-04	44	22	49	36
2004-05	43	22	48	36
2005-06	40	${ }^{21}$	47	35
2006-07	40	20	45	34
2007-08	38	18	44	33
2008-09	35	17	42	31
2009-10	33	15	39	29
2010-II	30	14	37	27
2011-12	28	14	35	26
2012-13	26	14	33	25
2013-14	25	13	$3{ }^{1}$	24
2014-15	26	14	31	24
2015-16	27	15	31	25
2016-17	26	14	29	24
2017-18	24	${ }^{13}$	27	22

2014-15 and 2017-18 Enrollment and 2017-18 Attrition in Texas

RaceEthnicity and Gender	2014-15 9th Grade Enrollment	2017-18 12th Grade Enrollment	$\begin{gathered} \text { 2014-15 } \\ 9-12 \text { th Grade } \\ \text { Enrollment } \end{gathered}$	$\begin{gathered} \text { 2017-18 } \\ \text { 9-12th Grade } \\ \text { Enrollment } \end{gathered}$	2017-18 Expected I2th Grade Enrollment	Students Lost to Attrition	Attrition Rate
Native American	1,571	1,197	5,715	5,505	I,5II	314	21
Asian/Pacific Islander	15,368	15,823	56,787	67,498	18,267	2,444	13
Black	51,743	40,815	177,784	184,859	53,801	12,986	24
White	120,885	104,440	444,059	440,455	119,907	15,467	13
Hispanic	205,530	162,741	685,870	748,864	224,401	61,660	27
Multiracial	7,052	6,325	24,609	28,683	8,221	1,896	23
All Groups	402,149	331,341	1,394,824	1,475,864	426,108	94,767	22
Male	210,038	167,129	714,962	755,979	222,395	55,266	25
Female	192,III	164,212	679,862	719,885	203,713	39,501	19

Notes: Figures calculated by IDRA from Texas Education Agency Fall Membership Survey data. IDRA's 2017-18 attrition study involved the analysis of enrollment figures for public high school students in the ninth grade during 2013-14 school year and enrollment figures for 12 th grade students in 2017-18. This period represents the time span when ninth grade students would be enrolled in school prior to graduation. The enrollment data for special school districts (military schools, state schools and charter schools) were excluded from the analyses since they are likely to have unstable enrollments and/or lack a tax base to support school programs. School districts with masked student enrollment data were also excluded from the analysis. Since the 2014-15 school year, TEA has collected enrollment data for race and ethnicity separately in compliance with new federal standards. For the purposes of analysis, IDRA continued to combine the Asian and Native Hawaiian/Other Pacific Islander categories. Attrition rates were not calculated for students classified as having two or more races (multiracial).
Intercultural Development Research Association, 2018

The 69th Legislature responded by the passing HB IoIo in 1987 through which the state and local responsibilities for collecting and monitoring dropout data were substantially increased (TEA, July 20II).

Overthe 33 -yearstudyperiod, Texas publicschools have losta cumulative total of more than 3.8 million students from high school enrollment.

Data Collection

IDRA uses data on public school enrollment from the Texas Public Education Information ManagementSystem(PEIMS) Fall Membership Survey. During the fall of each year, school districts are required to report information to TEA via the PEIMS for all public school students by grade levels. TEA masked some data with aggregates less than five students in order to comply with the Family Educational Rights and Privacy Act (FERPA). Where data were masked, it was necessary to exclude some district- and/or countylevel data from the total studentenrollment counts.

Beginning in 2010-II, TEA reported student enrollment data on race and ethnicity based on new federal standards that require data on race and ethnicity to be collected separately using a specific two-part question: (I) Is the person Hispanic/ Latino? and (2) What is the person's race? Prior to the new standard, TEA allowed school districts to report a student's race or ethnicity in one of five categories: American Indian or Alaska Native (Native American); Asian or Pacific Islander; Black or African American (not of Hispanic origin); Hispanic/Latino; or White (not of Hispanic origin). Under the new standards, TEA now requires school districts to report a student's race or ethnicity in one of seven categories: American Indian or Alaska Native; Asian; Black or African American; Hispanic/Latino; Native Hawaiian or Other Pacific Islander; White; or Multiracial (two or more races).

Student enrollment data at grades 9-I2 increased from 1,523,779 in 2016-17 to 1,547,045 in 2017I8 (see box on Page 7). The percentage of the ninth through i2th grade population reported
as Hispanic increased from 50.9 percent to 51.2 percent in the one-year period. The percentage of the ninth through I2th grade population reported as Black or African American remained about the same from I2.7 percent to 12.6 percent, and the percentage reported as White declined from 29.9 percent to 29.3 percent (see box on Page 8).

Methods

Attrition rates are an indicator of a school's holding powerorability to keep students enrolled inschool and learning until they graduate. Along with other dropout measures, attrition rates are useful in studying the magnitude of the dropout problem and the success of schools in keeping students in school. Though each measure has different meaning and calculation methods, each provides unique information that is important for assessing schools' quality of education and school holding power (see Page 60 for dropout definitions).

Spanning a period from 1985-86 through 2017-18, the IDRA attrition studies have provided time series data, using a consistent methodology, on the number and percent of Texas public school students who leave school prior to graduation. These studies are the only source for examining the magnitude of the dropout problem in Texas across more than three decades using uniform methods. They provide information on the effectiveness and success of Texas public high schools in keeping students engaged in school until they graduate with a high school diploma.

IDRA's attrition studies involve an analysis of ninth-grade enrollment figures and i2th-grade
enrollment figures three years later. IDRA adjusts the expected grade i2 enrollment based on increasing or declining enrollment in grades 9-12. This period represents the time span during which a student would be enrolled in high school.

IDRA collects and uses high school enrollment data from the TEA Fall Membership Survey to compute countywide and statewide attrition rates by race-ethnicity and gender (see box on Page 10). Enrollment data from special school districts (military schools, state schools, charter schools) are excluded from the analyses because they are likely to have unstable enrollments or lack a tax base for school programs.

For the purposes of its attrition reporting, IDRA continued to use the term Native American in place of American Indian or Alaska Native. Additionally, IDRA combined the categories of Asian and Native Hawaiian or Other Pacific Islander and continued to use the term Asian/ Pacific Islander in place of the separate terms of Asian and Native Hawaiian or Other Pacific Islander.

Enrollment data for the relatively new multiracial category were provided, but the calculation of an attrition rate could not be achieved without corresponding first-year categories. TEA masked some data with aggregates fewer than five students in order to comply with FERPA. Where data were masked, it was necessary to exclude some district- and/or county-level data from the total student enrollment counts.

Additional Resources Online

- Look Up Your County - See attrition rates and numbers over the last io years
- eBook - Types of Dropout Data Defined
- Online graphs
- Infographic: Attrition Highlights in Texas, 2017-18
- Infographic: 6 School Policies that Lead to Higher Dropout Rates - Infographic
- Infographic: Timeline for the Class of 2018
- eBook - Resources on Student Discipline Policy and Practice
- Book - Courage to Connect: A Quality Schools Action Framework
- Book - College Bound and Determined
- Overview of the Coca-Cola Valued Youth Program, which keeps 98 percent of students in school
- Ideas and Strategies for Action
- Classnotes Podcast Episodes: on Dropout Prevention and CollegeReadiness
www.idra.org

Proportion of Student Population
Lost to Attrition

Intercultural Development Research Association, 2018

Texas Student Enrollment, Grades 9-I2, 2014-15 to 2017-18

Race-Ethnicity	Enrollment by Grade				
	9	10	II	12	9-12
2014-15					
Black or African American	54,705	48,016	43,989	39,820	186,530
Hispanic	216,296	186,12I	166,500	149,136	718,053
American Indian or Alaska Native	1,646	1,520	1,45I	1,359	5,976
White	124,068	116,415	109,828	104,151	454,462
Asian	15,400	14,019	13,825	13,444	56,688
Native Hawaiian/Other or Pacific Islander	532	540	464	496	2,032
Multiracial	7,295	6,614	6,012	5,404	25,325
Total	419,942	373,245	342,069	313,810	1,449,066
2015-16					
Black or African American	55,6ı6	49,189	45,027	40,730	190,562
Hispanic	224,127	195,093	173,392	156,96I	749,573
American Indian or Alaska Native	1,736	1,449	1,379	1,307	5,871
White	122,593	117,706	1II,378	104,374	456,051
Asian	16,371	15,580	14,237	13,830	60,018
Native Hawaiian/Other or Pacific Islander	617	548	546	447	2,158
Multiracial	7,644	6,969	6,360	5,829	26,802
Total	428,704	386,534	352,319	323,478	1,491,035
2016-17					
Black or African American	56,025	49,657	45,993	41,4II	193,086
Hispanic	227,208	203,515	181,279	163,4II	775,413
American Indian or Alaska Native	1,625	1,515	1,342	1,252	5,734
White	121,294	115,985	112,222	105,598	455,099
Asian	16,994	16,710	15,817	14,290	63,8iI
Native Hawaiian/Other or Pacific Islander	604	580	534	548	2,266
Multiracial	7,995	7,372	6,746	6,257	28,370
Total	431,745	395,334	363,933	332,767	1,523,779
2017-18					
Black or African American	55,975	50,148	46,329	42,746	195,198
Hispanic	227,319	204,935	188,795	171,047	792,096
American Indian or Alaska Native	1,646	I,460	I,444	1,256	5,806
White	120,753	115,234	110,795	106,999	453,78I
Asian	17,923	16,710	16,791	15,842	67,719
Native Hawaiian/Other or Pacific Islander	656	580	571	519	2,354
Multiracial	8,679	7,372	7,146	6,605	30,091
Total	432,951	397,209	371,871	345,014	1,547,045

Data source: Texas Education Agency, Standard Reports, Enrollment Reports, 2013-14 to 2017-18, https://rptsvri.tea.texas.gov/adhocrpt/adste.html
Intercultural Development Research Association, 2018

Texas Student Enrollment, Grades 9, I2 and 9-I2, 2014-I5 to 2017-I8 (percent)

Race-Ethnicity	2014-15	2015-16	2016-17	2017-18
9th Grade Enrollment				
Black or African American	13.0	13.0	13.0	12.9
Hispanic	51.5	52.3	52.6	52.5
American Indian or Alaska Native	0.4	0.4	0.4	0.4
White	29.5	28.6	28.1	27.9
Asian	3.7	3.8	3.9	4.I
Native Hawaiian/Other or Pacific Islander	O.I	O.I	O.I	0.2
Multiracial	1.7	1. 8	1. 9	2.0
Total All Ethnicities	100.0	100.0	100.0	100.0
12th Grade Enrollment				
Black or African American	12.7	12.7	12.4	12.4
Hispanic	47.5	50.5	49.I	49.6
American Indian or Alaska Native	0.4	0.4	0.4	0.4
White	33.2	30.5	31.7	31.0
Asian	4.3	4.0	4.3	4.6
Native Hawaiian/Other or Pacific Islander	0.2	O.I	0.2	0.2
Multiracial	I. 7	І. 8	I. 9	I. 9
Total All Ethnicities	100.0	100.0	100.0	100.0
9-12th Grade Enrollment				
Black or African American	12.9	12.8	12.7	12.6
Hispanic	49.6	50.3	50.9	51.2
American Indian or Alaska Native	0.4	0.4	0.4	0.4
White	31.4	30.6	29.9	29.3
Asian	3.9	4.0	4.2	4.4
Native Hawaiian/Other or Pacific Islander	0.1	O.I	0.1	0.2
Multiracial	1.7	I. 8	1.9	I. 9
Total All Ethnicities	100.0	100.0	100.0	100.0

Data source: Texas Education Agency, Standard Reports, Enrollment Reports, 2013-14 to 2017-18 Intercultural Development Research Association, 2018

Latest Study Results

One of every five students (22 percent) from the freshman class of 2014-15 left school prior to graduating with a high school diploma. For the class of 2017-18, there were 94,767 students who were lost from public school enrollment between the 2014-15 and 2017-18 school years. (See box on Page ir.)

The overall attrition rate declined from 33 percent in 1985-86 to 22 percent in 2017-18. Over the past three decades, attrition rates have fluctuated between a low of 22 percent in 2017-18 to a high of 43 percent in 1996-97. (See boxes on Page 9 and Page io.)

Racial-Ethnic StudentData. The attrition rates of Hispanic students and Black students are much higher than those of White students (see box on Page 4). From 1985-86 to 2017-18, attrition rates of Hispanic students declined by 40 percent (from 45 percent to 27 percent). During this same period, the attrition rates of Black students declined by 29 percent (from 34 percent to 24 percent). Attrition rates of White students declined by 52 percent (from 27 percent to I3 percent). Native American students had a decline of 53 percent in their attrition rates (from 45 percent to 21 percent), and Asian/ Pacific Islander students had adecline of 6ı percent (from 33 percent to I3 percent).

Hispanic students have higher attrition rates than either White students or Black students. The
attrition rate of Asian/Pacific Islander students was the lowestamong the racial/ethnic groups. For the class of 2017-18, Black students and Hispanic students were about two times more likely to leave school without graduating with a diploma than White students.

Gap Over Time. The gap between the attrition rates of White students and of Black students and Hispanic students is nearly as high as or higher than 33 years ago. The gap between the attrition rates of White students and Black students has increased from 7 percentage points in 1985-86 to II percentage points in 2017-18, a 57 percent increase. The gap between the attrition rates of White students and Hispanic students decreased from the 18 percentage points in 1985-86 to 14
percentage points in 2017-18, a 22 percent decline. (See boxes on Page I2.)

The gap between the attrition rates of White students and Native American students has declined from 18 percentage points in $1985-86$ to 8 percentage points in 2017-18, a 56 percent decline. Asian/Pacific Islander students exhibited the greatest positive trend in the reduction of the gap in attrition rates compared to White students. The gap between the attrition rates of White students and Asian/Pacific Islander students has declined from 6 percentage points in 1985-86 to equaling the attrition rate of White students in 2017-18.

Historically, Hispanic students and Blackstudents have comprised a large proportion of students lost by schools. For the period of 1985-86 to 2017-18, students from ethnic minority groups account for nearly three-fourths (73.9percent) of the estimated 3.8 million students lost from public high school enrollment.

Hispanic students account for 55.4 percent of the students lost to attrition. Black students account for 16.6 percent of all studentslost fromenrollmentdue
to attrition over the years. White students account for 26.I percent of students lost from high school enrollment over time. Attrition rates for White students and Asian/Pacific Islanderstudents have been typically lowerthan the overall attrition rates.

Male-Female Student Data. The attrition rates for males have been higher than those of females. From 1985-86 to 2017-18, attrition rates of male students declined by 29 percent (from 35 percent to 25 percent). Attrition rates for females declined by 41 percent from 32 percent in 1985-86 to I9 percent in 2017-18. Longitudinally, males have accounted for 57.2 percent of students lost from school enrollment, while females have accounted for 42.8 percent. In the class of 2017-18, males were I. 3 times more likely to leave school without graduating with a diploma than females.

Additional Data. County-level data are provided on Pages $14-15$. In addition, trend data by county are available on IDRA's website at www.idra. org (see box on Page 13). The box on Page I2 shows attrition and dropout rates in Texas over time as reported in IDRA's attrition studies and TEA dropout reports. Descriptions of different

A total of 94,767 students from the 2014-15 freshman class were lost from public high school enrollment in 2017-18 compared to 86,276 in 1985-86.

Longitudinal Attrition Rates by Race-Ethnicity in Texas Public Schools, $1985-86$ to 2017-18

\longleftarrow All Students Native American Asian/ Pacific Islander Black White Hispanic \square Multiracial
Intercultural Development Research Association, 2018

Longitudinal Attrition Rates in Texas Public High Schools,
I985-86 to 2017-18

Group	Race-Ethnicity						Gender		Total
	Native American	Asian/Pacific Islander	Black	White	Hispanic	Multiracial	Male	Female	
1985-86	45	33	34	27	45		35	32	33
1986-87	39	30	38	26	46		35	32	34
1987-88	37	28	39	24	49		35	3 I	33
1988-89	47	23	37	20	48		34	29	31
1989-90	39	22	38	19	48		34	29	31
1990-91	39	23	37	19	47		34	28	31
1991-92	40	2 I	39	22	48		37	30	34
1992-93	39	21	43	25	49		39	33	36
1993-94	38	2 I	47	28	50		4I	36	39
1994-95	42	18	50	30	5 I		43	37	40
1995-96	44	18	51	31	53		45	39	42
1996-97	43	20	5 I	32	54		46	40	43
1997-98	42	2 I	49	3 I	53		45	38	42
1998-99	25	19	48	31	53		45	38	42
1999-00	43	20	47	28	52		44	36	40
2000-01	42	20	46	27	52		43	36	40
2001-02	29	14	46	26	5 I		43	35	39
2002-03	39	17	45	24	50		4 I	34	38
2003-04	42	16	44	22	49		40	33	36
2004-05	40	17	43	22	48		39	32	36
2005-06	39	17	40	21	47		38	31	35
2006-07	36	14	40	20	45		37	30	34
2007-08	38	14	38	18	44		36	29	33
2008-09	32	14	35	17	42		35	27	31
2009-10	28	15	33	15	39		33	25	29
2010-II	30	15	30	14	37		3 I	23	27
2011-12	24	17	28	14	35		29	22	26
2012-13	22	15	26	14	33		28	22	25
2013-14	22	13	25	13	3 I	23	26	2 I	24
2014-15	19	13	26	14	3 I	23	27	22	24
2015-16	20	12	27	15	3 I	23	27	22	25
2016-17	20	13	26	14	29	23	26	2 I	24
2017-18	2 I	I3	24	I3	27	23	25	19	22
Percent Change* From 1985-86 to 2017-18	-53	-6I	-29	-52	-40	N/A	-29	-4I	-33

[^0]
Numbers of Students Lost to Attrition in Texas,

1985-86 to 2017-18

School Year	Total	Race-Ethnicity						Gender	
		Native American	Asian/ Pacific Islander	Black	White	Hispanic	Multiracial	Male	Female
1985-86	86,276	185	1,523	12,268	38,717	33,583		46,603	39,673
1986-87	90,317	152	1,406	14,416	38,848	35,495		48,912	41,405
1987-88	92,213	159	1,447	15,273	34,889	40,435		50,595	41,618
1988-89	88,538	252	1,189	15,474	28,309	43,314		49,049	39,489
1989-90	86,160	196	1,214	15,423	24,510	44,817		48,665	37,495
1990-91	83,718	207	1,324	14,133	23,229	44,825		47,723	35,995
1991-92	91,424	215	1,196	15,016	27,055	47,942		51,937	39,487
1992-93	101,358	248	1,307	17,032	32,6II	50,160		57,332	44,026
1993-94	113,06I	245	1,472	19,735	37,377	54,232		63,557	49,504
1994-95	123,200	296	1,226	22,856	41,648	57,174		68,725	54,475
1995-96	135,438	350	1,303	25,078	45,302	63,405		75,854	59,584
1996-97	147,313	327	I,486	27,004	48,586	69,910		82,442	64,871
1997-98	150,965	352	1,730	26,938	49,135	72,810		85,585	65,380
1998-99	151,779	299	I,680	25,526	48,178	76,096		86,438	65,341
1999-00	146,714	406	1,771	25,097	44,275	75,165		83,976	62,738
2000-01	144,24I	413	1,794	24,515	41,734	75,785		82,845	61,396
2001-02	143,175	237	1,244	25,017	39,953	76,724		82,762	60,413
2002-03	143,280	436	I,6II	25,066	36,948	79,219		82,62I	60,659
2003-04	139,413	495	1,575	24,728	33,104	79,511		80,485	58,928
2004-05	137,424	490	1,789	24,373	31,378	79,394		78,858	58,566
2005-06	137,162	512	1,876	24,366	29,903	80,505		78,298	58,864
2006-07	134,676	500	1,547	23,845	28,339	80,445		76,965	57,7II
2007-08	132,815	581	1,635	23,036	25,923	81,640		76,532	56,283
2008-09	125,508	450	1,685	21,019	22,476	79,878		73,572	51,936
2009-10	119,836	427	1,951	20,051	20,416	76,991		70,606	49,230
2010-II	110,804	601	1,951	16,880	16,771	74,60I		65,983	44,82I
2011-I2	103,140	432	2,353	14,675	16,615	69,065		6I,165	41,975
2012-13	99,575	412	2,171	13,437	16,390	67,165		58,758	40,817
2013-14	94,7II	363	2,015	12,324	15,437	62,990	1,582	55,094	39,617
2014-15	99,297	313	2,017	13,525	17,047	64,825	1,570	57,626	41,671
2015-16	102,610	320	1,852	14,423	17,441	66,863	1,7II	59,365	43,245
2016-17	99,960	305	2,124	13,802	17,107	64,849	1,773	57,874	42,086
2017-18	94,767	314	2,444	12,986	15,467	61,660	1,896	55,266	39,501
All Years	3,850,868	1I,490	54,908	639,337	1,005,128	2,131,473	8,532	2,202,068	1,648,800

[^1]
Trend in Black-White Attrition Rates

Trend in Hispanic-White Attrition Rates

Intercultural Development Research Association, 2018
dropout counting and reporting methodologies are outlined on Page 60.

Conclusions

The results of the current attrition study show that attrition rates today are lower than they have ever been. Trend data shows that evidence is mounting that attrition rates are indeed declining, but persistent gaps in the attrition rates of White and non-White students continue to exist. The gaps between the attrition rates of White students and Hispanic students and of White students and Black students continue to be about the same or higher than they were 33 years ago. Additional research is needed to address why these persistent gaps remain.

A supplemental analysis using linear regression models predictsthat Texas will notreach anattrition rate of zero until 2037, over two decades from this year. (See analysis on Page 17.)

Educators, policymakers and the community at large must continue to advocate for instruction, programs and funding to ensure that every child graduate from high schools and that they have full opportunity forpost-secondary education, gainful employment, and maximum career earnings.

IDRA urges communities to work together to review issues surrounding school dropouts and to take action for the benefit of children and the future of Texas. IDRA has developed a number of products to guide communities and schools in

Attrition and Dropout Rates in Texas Over Time

	IDRA Attrition Rates ${ }^{1}$	TEA Attrition Rates ${ }^{1}$	TEA Long. TEA Dropout Rates	EA Annual Dropout Rates
1985-86	33		--	--
1986-87	74		--	--
1987-88	33		34.0	6.7
1988-89) 3I		3 I 3	6.I
1989-90	- 3I		27.2	5.I
1990-91	I 3I		2 I .4	3.9
1991-92	34		20.7	3.8
1992-93	36		15.8	2.8
1993-94	439		I4.4	2.6
1994-95	540		10.6	I. 8
1995-96	642		IO.I	I. 8
1996-97	743		9.1	I. 6
1997-98	842	36	14.7	ı. 6
1998-99	42	37	9.0*	I. 6
1999-00	- 40	37	7.7^{*}	I. 3
2000-OI	I 40	37	6.8*	I. 0
2001-02	23	36	5.6 *	0.9
2002-03	38	34	4.9 *	0.9
2003-04	436	33	4.2 *	0.9
2004-05	536	32	4.6*	0.9
2005-06	635	31	$9.1{ }^{* * *}$	2.6 **
2006-07	$7 \quad 34$	30	II. $6^{* * *}$	$2.7^{* *}$
2007-08	833	29	$10.7^{* * *}$	$2.2^{* *}$
2008-09	93 I	29	$9.5^{* * *}$	2.0 **
2009-10	- 29	27	$7.6^{\text {*** }}$	1.7**
2010-II	27	25	$7.1{ }^{\text {\%** }}$	1.6**
2011-I2	26	23	$6.6{ }^{\text {*** }}$	1.7**
2012-I3	25	22	$6.7^{* * *}$	1. $6^{* *}$
2013-14	24	2 I	$6.7{ }^{\text {*** }}$	1.6**
2014-I5	24	20.3	36.3 ***	$2.15{ }^{\text {** }}$
2015-16	25	19.6	$6.2^{* * *}$	$2.0^{* *}$
2016-17	24	18.5	5.9 ***	1.9**
2017-18	22	n / a	n/a	n / a

${ }^{\prime}$ Attrition rates for grades 9-I2

* Longitudinal completion rate (Grades 7-12)
** Annual dropout rate using NCES definition (Grades 7-I2)
*** Longitudinal dropout rate using NCES definition (Grades 7-12)
Sources: Intercultural Development Research Association, 2018; Texas Education Agency, Secondary School Completion and Dropouts, 2003-04 to 201718; Texas Education Agency, Report on Public School Dropouts, 1987-88 to 1996-97

Look Up Your Texas County

IDRA is providing dropout trend data at your fingertips.
Go to the IDRA website to see a graph of high school attrition in your county over the last 9 years. https://idra.news/Txlook

See Texas Attrition Rates Over the Last 9 Years by County

Study, $2017-18$ (released November 2011
students have been lost trom envolment
Attrition Rates, by County Over Time

improving school holding power in schools in Texas and across the nation. IDRA's publication, College Boundand Determined, shows how one south Texas school district transformed itself from lowachievement and low expectations to planning for all students to graduate from high school and college. The report's webpage (http://budurl. com/IDRAcbdw also see Page 57) provides details about this story and on how the report can be acquired.

In the book, Courage to Connect: A Quality Schools Action Framework, IDRA shows how communities and schools can work together to strengthen school success in a number of areas including graduation outcomes. The book's web page (see Page 56) provides a table of contents, excerpts, related podcasts and other resources. IDRA's one-page Quality School Holding Power Checklist provides a set of criteria for assessing and selecting effective dropout prevention strategies (see Page 55). IDRA's set of principles for policymakers and school leaders is provided on Page 58.

Resources

Cárdenas, J.A., \&M. Robledo Montecel, J. Supik. (1986). Texas Dropout Survey Project (San Antonio, Texas: Intercultural Development Research Association).
Johnson, R. (2017).Texas' Overall Attrition Rates Inches Down - School Holding Power Improvement Slow (San Antonio, Texas: Intercultural Development Research Association). Montes, F. "Attrition Rate Reached Lowest Value but
Trend Needs to Quicken to Make a Difference," Texas Public School Attrition Study, 2017-I8 (San Antonio, Texas: Intercultural Development Research Association, October 2016).
Texas Education Agency. (2018). Secondary School Completion
and Dropouts in Texas Public Schools 2015-16 (Austin, Texas: Texas Education Agency).
TexasEducation Agency.(2018). Standard Reports, Enrollment Reports, 2007-08 to 2016-17 (Austin, Texas: Texas Education Agency).

Roy L. Johnson, M.S., is director of research, evaluation and support (roy.johnson@idra.org). Charles Cavazos, an IDRA education assistant, provided assistance with data analysis (charles.cavazos@idra.org).

The results of the current attrition study show that attrition rates today are lower than they have ever been... But the gaps between the attrition rates of White students and Hispanic students and of White students and Black students continue to be about the same or higher than they were 33 years ago.

Attrition Rates in Texas Public Schools, by Texas County,
by Race-Ethnicity, 2017-18

County	Attrition Rates ${ }^{\text { }}$				County	Attrition Rates ${ }^{\text {i }}$			
Name	Black	White	Hispanic	Total ζ	Name ζ	Black	White た	Hispanic	Total
Anderson	24	18	21	20	Dewitt	24	8		
Andrews	**	24	24	25	Dickens	25	20	40	29
Angelina	21	9	22	15	Dimmit	**	54	39	39
Aransas	100	16	8	13	Donley	8	6	38	10
Archer	100	6	23	9	Duval		37	24	24
Armstrong	100	**	63	**	Eastland	46	15	8	15
Atascosa	20	12	20	18	Ector	43	35	43	41
Austin	21	15	22	19	Edwards		22	18	18
Bailey		**	19	11	Elus	14	21	26	22
Bandera	25	6	33	15	El Paso	18	16	19	19
Bastrop	20	11	42	31	Erath	41	23	35	28
Baylor	13	16	**	6	Falls	24	18	35	26
Bee	14	27	32	32	Fannin	14	4	23	8
Bell	34	23	33	30	Fayette	46	${ }^{6}$	39	21
Bexar	25	9	28	24	Fisher	100	**	28	7
Blanco		7	14	10	Flord	21	3	18	15
Borden		44	0	40	Foard		11	7	5
Bosque	**	12	16	6	Fort Bend	16	9	32	18
Bowie	18	12	23	15	Franklin	48	20	7	18
Brazoria	22	17	31	24	Freestone	14	8	36	16
Brazos	37	13	41	28	Frio		20	31	30
Brewster		10	23	18	Gaines	11	19	27	24
Briscoe		10	51	24	Galveston	24	11	27	18
Вrooks		**	19	18	Garza	50	18	44	35
Brown	25	24	28	25	Gillespie	**	5	21	11
Burleson	31	4	22	15	Glasscock		30	15	23
Burnet	26	19	27	22	Goliad	**	2	28	13
Caldwell	27	**	29	19	Gonzales	14	1	29	23
Calhoun	43	20	30	28	Gray	27	16	23	18
Callahan	25	23	22	23	Grayson	33	14	27	20
Cameron	22	16	25	25	Gregg	24	11	22	18
Camp	4	13	5	7	Grimes	43	18	46	33
Carson	0	11	**	8	Guadalupe	5	11	25	17
Cass	**	10	**	7	Hale	**	6	26	21
Castro	100	1	25	18	Hall	-	**	23	8
Chambers	25	14	24	18	Hamilton	100	18	28	20
Cheroker	21	19	33	26	Hansford		2	30	19
Childress	18	9	31	17	Hardeman	**	23	4	14
Clay	0	4	27	7	Hardin	36	12	24	16
Cochran	**	$\underset{*}{14}$	19	$\underset{*}{15}$	Harris	26	10	28	23
Core		**	3	**	Harrison	24	14	34	21
Coleman	20	13	26	16	Hartley		3	35	18
Collin	14	11	20	16	Haskell	8	3	20	10
Collingsworth		**	**	**	Hars	14	17	27	23
Colorado	28	14	34	25	Hemphill		24	26	25
Comal	22	12	25	17	Henderson	11	18	13	16
Соmanche	**	11	17	14	Hidalgo	25	24	29	29
Солсно		**	16	2	Hill	24	4	22	13
Cooke	45	17	33	23	Hockley	40	10	21	18
Coryell	16	21	19	20	Hood	56	19	18	19
Cottle	25	19	38	24	Hoprins	29	13	21	17
Crane	100	${ }_{*}^{23}$	${ }_{*}^{26}$	${ }_{*}^{27}$	Houston	16	4	27	11
Crockett		$\stackrel{* *}{* *}$	**	$\stackrel{* *}{* *}$	Howard	20	22	38	31
Crosbr	**	**	4	**	Hudspeth		50	12	16
Culberson		**	9	6	Hunt	24	13	21	16
Dallam		19	28	23	Hutchinson	${ }_{* *}^{* *}$	12	12	9
Dallas	24	4	31	25	Irion	**	28		17
Dawson	**	4	27	20	Jack		11	21	15
Deaf Smith	71	20	30	29	Jackson	**	2	28	12
Delta	1	13	**	10	Jasper	8	25	40	23
Denton	21	12	23	17	Jefr Davis	.	11	14	10

'Calculated by: (r) dividing the high school enrollment in the end year by the high school enroll-
ment in the base year; (2) multiplying the results from Calculation I by the ninth grade enrollment
in the base year; (3) subtracting the results from Calculation 2 from the 12th grade enrollment in the end year; and (4) dividing the results of Calculation 3 by the result of Calculation 2. The attrition rate results (percentages) were rounded to the nearest whole number.

Attrition Rates in Texas Public Schools，By Texas County， by Race－Ethnicity，2017－18（continued）

Countr	Attrition Rates				Countr	Attrition Rates			
${ }^{\text {Name }}$	${ }^{\text {Black }}$	$\mathrm{Whrim}^{\text {m }}$	Hspanic	TotaL	Name	${ }^{\text {Black }}$	Weite	Hispanic	Torat
S	2	，	25	5	5	38	10	2	／
			${ }_{\substack{18 \\ 35}}$					${ }_{15}$	＂
，jomeon	3	${ }_{\square}^{22}$	${ }_{19}^{30}$	${ }_{1}^{24}$		${ }_{63}$	${ }_{28}^{2}$	${ }^{3} 5$	${ }_{26}{ }^{\circ}$
	${ }_{23}^{22}$	${ }_{16}^{16}$	${ }_{28}^{25}$	${ }_{23}^{22}$		${ }_{88}$	${ }_{27}^{2}$	品	吕
	5	${ }_{\square}^{4}$	${ }_{\substack{20 \\ 38}}$			${ }_{18}^{23}$	${ }_{18}^{10}$	35	210
	＂	${ }_{5}^{8}$	${ }_{5}^{18}$	${ }_{3}^{10}$		${ }_{10}^{10}$	＂	${ }_{10}^{21}$	${ }_{14}^{16}$
$\substack { \text { Kincm } \\ \begin{subarray}{c}{\text { Kmmar }{ \text { Kincm } \\ \begin{subarray} { c } { \text { Kmmar } } } \end{subarray}$		20	＂	${ }_{3}$		${ }^{20}$	${ }_{22}$	${ }_{25}^{32}$	${ }_{21}$
	$\stackrel{25}{15}$	${ }^{11}$	${ }_{32}^{34}$	${ }^{31}$		\％	${ }^{18}$	${ }_{22}^{24}$	${ }_{20}^{20}$
$\xrightarrow{\text { Lencman }}$	${ }_{15}^{15}$	12	${ }_{20}^{20}$	${ }_{18}^{15}$	come	${ }^{100}$	\％	${ }_{25}$	${ }_{18}^{3}$
		${ }^{106}$	22	${ }^{24}$		＋	\cdots	${ }_{3}^{32}$	${ }^{19}$
	${ }_{22}^{22}$	${ }_{6}^{4}$	${ }_{\substack{25 \\ 15}}^{\substack{25}}$	${ }^{\circ}$		${ }^{15}$	${ }^{18}$		${ }_{6}^{20}$
	${ }^{27}$	${ }_{21}^{21}$	旡	${ }^{29}$		$\stackrel{2}{1}$	，	${ }_{\substack{27 \\ 23 \\ 23}}$	－
			－	22		＂	（10）	${ }_{4}^{32}$	，
		${ }_{12}^{20}$	（is	${ }_{21}^{27}$			${ }_{4}$	${ }_{3}^{30}$	
	${ }_{\substack{50 \\ 18}}$	${ }_{18}$	近 18	${ }_{11}^{11}$		${ }_{30}^{40}$	2	${ }_{\substack{15 \\ 12}}$	${ }_{2}^{1}$
			${ }_{30}^{32}$	${ }_{22}^{22}$	Tincter		${ }^{21}$	${ }_{26}^{35}$	？
Masm	．		${ }_{26}$	${ }_{18}^{4}$		${ }^{26}$	，	$\stackrel{10}{0}$	
Manemen	${ }_{50}^{50}$					${ }_{18}^{21}$	${ }^{10}$	${ }_{28}^{26}$	${ }^{21}$
	${ }^{26}$ ．		${ }_{6}^{27}$	$\stackrel{20}{7}$	，	${ }^{17}$	${ }_{6}$	${ }_{3}^{30}$	${ }^{23}$
	$\stackrel{3}{3}$	$\stackrel{2}{2}$	${ }_{\substack{28 \\ 70}}$			${ }_{18}^{18}$	${ }_{8}^{18}$	${ }_{28}^{88}$	2
	\％	${ }_{\substack{19 \\ 20}}$	${ }^{40}$			${ }_{50}$	${ }_{29}{ }^{2}$	${ }_{28}^{18}$	${ }_{28}$
	${ }_{5}^{52}$	${ }_{15}$	－235	${ }_{8}^{14}$		${ }_{4}^{36}$	${ }_{18}^{16}$	${ }_{\substack{10 \\ 24}}$	${ }_{21}^{11}$
	\pm	${ }_{\substack{18 \\ 18}}^{18}$				${ }^{48}$	${ }_{3}^{17}$	${ }_{48}^{46}$	，
（Mose					Watur	（in	$\stackrel{20}{6}$	cisi	，
	${ }_{16}^{16}$	${ }_{16}$	${ }_{\substack{28 \\ 38}}$	${ }_{25}$	Wemmex	${ }^{17}$	${ }_{16}^{16}$	${ }_{\substack{21 \\ 35}}$	${ }_{27}^{27}$
Nomow	${ }^{2}$	${ }_{24}^{5}$	－		Wereur	3	＂	${ }_{18}^{13}$	${ }_{8}$
			${ }_{30}$				${ }_{4}^{29}$	${ }^{2}$	${ }^{\text {B }}$
	${ }_{\substack{31 \\ 48 \\ 4 \\ \hline}}$	$\underset{\substack{11 \\ 21}}{21}$				${ }_{8}^{18}$	${ }_{14}^{14}$	${ }_{21}^{22}$	${ }^{16}$
	${ }_{8}^{16}$		${ }_{\substack{24 \\ 25}}^{\substack{2}}$			${ }_{\substack{35 \\ 38}}$		cin	$\underset{\substack{19 \\ \\ 23 \\ \hline 1}}{ }$
	12					，		${ }_{23}$	${ }_{\substack{15 \\ 21}}^{15}$
	，	${ }_{\substack{26 \\ 16}}$	${ }_{\substack{20 \\ 20}}^{20}$	${ }_{2}^{22}$		9	\cdots	${ }_{1}$	${ }_{6}$
					ronu	4	${ }^{13}$	${ }^{27}$	2

Intercultural Development Research Association， 2018

Changes in High School Attrition Rates in Texas Counties

${ }_{136}$ Counties Where High School Attrition Rates Improved Since Last Year

Anderson	Camp	Freestone	Jackson	Lubbock	Potter	Terry
Angelina	Carson	Frio	Jeff Davis	Madison	Reagan	Titus
Aransas	Cass	Garza	Jefferson	Martin	Red River	Trinity
Bandera	Castro	Goliad	Jim Wells	Mason	Reeves	Tyler
Bastrop	Chambers	Gonzales	Johnson	McClennan	Robertson	Upshur
Baylor	Cherokee	Grayson	Jones	Menard	Rockwall	Uvalde
Bee	Clay	Gregg	Kaufman	Mills	Runnels	Val Verde
Bell	Collin	Guadalupe	Kent	Mitchell	Rusk	Van Zandt
Bexar	Comal	Harris	Kerr	Montague	San Jacinto	Waller
Blanco	Concho	Hays	Kimble	Montgomery	San Patricio	Ward
Bosque	Crane	Hemphill	Kleberg	Motley	Shackelford	Washington
Bowie	Dallas	Hidalgo	La Salle	Nacogdoches	Shelby	Webb
Brazoria	Dawson	Hill	Lamar	Newton	Smith	Wharton
Brazos	Denton	Hockley	Lampasas	Nueces	Somervell	Wichita
Brooks	Dewitt	Hopkins	Lavaca	Ochiltree	Starr	Williamson
Brown	Dimmit	Houston	Lee	Orange	Stephens	Wilson
Burleson	El Paso	Howard	Leon	Palo Pinto	Sutton	Wise
Caldwell	Fisher	Hunt	Live Oak	Panola	Swisher	Young
Callahan	Fort Bend	Hutchinson	Llano	Parker	Tarrant	Zavala
Cameron	Franklin	Jack				

85 Counties Where High School Attrition Rates Worsened Since Last Year

Andrews	Comanche	Ellis	Hale	Kendall	Midland	San Saba
Archer	Cooke	Erath	Hamilton	Kinney	Milam	Schleicher
Atascosa	Coryell	Falls	Hansford	Knox	Moore	Scurry
Bailey	Cottle	Fannin	Hardeman	Lamb	Navarro	Taylor
Borden	Dallam	Fayette	Harrison	Liberty	Oldham	Tom Green
Brewster	Deaf Smith	Floyd	Haskell	Limestone	Parmer	Travis
Briscoe	Delta	Foard	Henderson	Lynn	Pecos	Victoria
Burnet	Dickens	Gaines	Hudspeth	Marion	Presidio	Walker
Calhoun	Duval	Galveston	Irion	Maverick	Randall	Wilbarger
Childress	Eastland	Gillespie	Jasper	McCulloch	Refugio	Willacy
Cochran	Ector	Gray	Jim Hogg	McMullen	Roberts	Wood
Coleman	Edwards	Grimes	Karnes	Medina	San Augustine	Zapata

Colorado

io Counties Where High School Attrition Rates Are the Same as Last Year

Austin	Hood	Nolan	Rains	Stonewall	Winkler	Yoakum
Hardin	Matagorda	Polk				

2I Counties Where High School Attrition Rates Cannot be Compared with Last Year*

Armstrong	Donley	Lipscomb	Sterling	Look up your county to see
Coke	Glasscock	Morris	Terrell	
Collingsworth	Hall	Real	Throckmorton	9-year trends
Crockett	Hartley	Sabine	Upton	https://idra.news/Txlook
Crosby	King	Sherman	Wheeler	
Culberson	* County rate the necessary	compared from available to calc	to the next when for ttrition rate.	h) the attrition rate is less than zero, there is no high

[^2]
Attrition Rate Reached Lowest Value but Trend Needs to Quicken to Make a Difference

by Felix Montes, Ph.D.

The annual attrition rate decreased by two points to 22 percent this year (2017-18), compared to last year's 24 percent (Johnson, 2017). Is this a firming of a downward trend? Since 1986, when IDRA started calculating the attrition rate on an annual basis, there have been only three uninterrupted downward trends.

First, between 1987 and 1989, the attrition rate decreased to 31 percent from 34 percent in two years. Second, in the period between 1997 and 2014 the rate nearly halved to 24 percent from 43 percent in 17 years. Third, the current trend, in the period between 2016 and 2018 , the rate moved from 25 percent to 22 percent - the lowest value ever calculated by the IDRA annual study.

What doesthis mean forthe future of attrition? Will we need another 17-year uninterrupted downward trend for this issue to subside?

To answer these questions and estimate when the attrition rate would reach zero at the present speed of decline, IDRA conducted this supplemental inquiry to the Texas high school attrition study. This forecast analysis is a recurrent feature, added to the full review IDRA devotes to this topic each fall. This article represents this year's update to the forecasting analysis with the most recent attrition figures. This is the $\mathrm{II}^{\text {th }}$ time we have performed this analysis.

Forecasting Summary

The chart elow depicts the updated forecasting analysis. The analysis shows that, although the downward trend continued, the long-term prospect did not change. We still must wait at least 20 years for the attrition rate to reach zero.

This year's attrition rate of 22 percent was within the range predicted last year, between 21 percent and 28 percent (Montes, 2017). The predictions for next year (2019), shown in the chart below in green, are between 20 percent and 27 percent, with 24 percent as the most likely value.

The chart first plots the attrition historic values (greenline, 1986to 2018), followed bythe forecasted values for the next 20 years (2019 to 2038).

Historic Attrition Rates and Next Year Forecasted Attrition Rates

Universal high school graduation is two decades away

Texas has lost 3.8 million students since 1986. We stand to lose another 2.3 million students.

Attrition Rate = 22\%

Actual, 2017-18

Attrition Rate $=0 \%$

Projected at Current Pace, 2037-38

2015

2020
2025
2030

The new prediction moves the zero-attrition year to 2038 , from 2037 last year. The overall picture changed little, as evidenced by the similarity between the revised forecasted lines, which present the forecasts for next year (the heaviest lines) and last year (lighter, dashed lines). The trend for lines to overlap continues, reinforcing the sense of inertia.

Forecasting Models

The forecasting analysis uses three models. The first model, Historic Forecast Model, includes all known attrition values, from 1986 to the present, as determined by the annual IDRA longitudinal attrition studies. This model assumes that each past rate has an equal weight over future rates. This model constructs the current 22 percent rate as a cyclical bottom within the long-term progression of the curve. Therefore, it anticipates an upward reversal. In this formulation, the attrition rate would increase to 27 percent in 2019. After that, it would begin a slow decline, initiating another downward trend. In this model, after 20 years, the attrition rate would still be 20 percent. This model is depicted in blue in the chart on Page 17.

The second model takes the downward trend started in 1997 as a more reasonable predictor of future attrition values. The fact that these are chronologically the most recent values supports this assumption. The recent past is often more relevant to the present than the distant past. Consequently, this Contemporary Forecast Model used the values corresponding to the years 1997 to present. This model predicts a 20 percent attrition rate for 2019, which is two points below the current attrition rate. After that, the attrition rate will progressively decrease by one or two points annually until it will reach zero in the year 2038. This model is depicted in pink in the chart on Page 17.

The third model takes a centrist approach between the historic and contemporary models. This Medium Forecast Model derives its values by calculating the medians between the corresponding pairs of the previous two models' values. The medium model predicts the attrition rate to first revert to 24 percent in 2019, then resume the downward trend, and after 20 years, still be io percent. The chart depicts this model in orange.

The three models complement each other. The contemporary model is useful for predictions that assume systematic changes, such as the existence of dropout prevention programs in a significant number of schools. The historic model provides a long-term view. Absent of some fundamental changes, history tends to repeat itself. The medium

Forecasted Numbers of Students Lost to Attrition

Period	Historic	Statistical Models Medium	Contemporary
$2018-23$	592,635	501,439	410,243
$2024-28$	581,803	443,799	305,796
$2029-33$	565,872	376,447	187,022
$2034-38$	544,843	299,382	54,472
Total	$\mathbf{2 , 2 8 5 , 1 5 3}$	$\mathbf{1 , 6 2 1 , 0 6 7}$	957,532

Intercultural Development Research Association, 2018
model is useful for medium-term predictions and tries to bridge the gap between the contemporary and the historic models.

Best Fit

The table below shows the performance of the three models through the ir-year application. It lists the forecasted value and its residual - the difference between the forecasted and the actual values - foreach model, annually. Smallestresiduals correspond to models that best fit the data.

The last row, year 2018-19, shows the current predicted values for the three models and the long-term absolute mean residual for each model. Initially, the contemporary model, with residuals between zero and two, was the best fit for the data, suggesting a continuous downward trend.

But, in years 2015-16 and 2016-17, this model undershot by 3 and 2 points (a difference of -3 and -2 , respectively), and the medium model missed
the actual value by just I point in both years. This placed the medium model as the best fit for this period. However, the most recent actual attrition rate reinstated the contemporary model as the best fit, with a residual of just -I. In addition, the long-term absolute mean residual for this model continued to be the lowest, I. 5 points (compared to 3.2 and 6.6).

Because the contemporary model is the best fit overall, we used it to forecast the year when the attrition rate would reach zero, listed in the last column of the table below, along with the number of years (N) it would take. The contemporary model puts the attrition rate in single digits in the early 2030 . The rate will progressively decrease thereafter and reach zero in 2038.

Thus, we are still at least 20 years away from achieving zero attrition, at the current pace, with many children lost in the intervening time. It is also essential to keep in mind that the contemporary

The new prediction moves the zero-attrition year to 2038, from 2037 last year... The trend for lines to overlap continues, reinforcing the sense of inertia.

Forecasted Model Values and Residuals

School Year	Attrition Rate	Historic Model		Medium Model		Contemporary Model		Years to Zero Rate	
		Values	Residuals	Values	Residuals	Values	Residuals	Year	N
2008-09	3 I	39	8	35	4	32	I	2044	36
2009-IO	29	36	7	33	4	3 I	2	2042	33
2010-II	27	34	7	32	5	29	2	2040	30
2011-I2	26	33	7	30	4	27	I	2037	26
2012-I3	25	32	7	29	4	26	I	2037	25
2013-14	24	3 I	7	28	4	25	I	2036	23
2014-15	24	3 I	7	27	3	24	\bigcirc	2035	21
2015-16	25	30	5	26	I	22	-3	2035	20
2016-17	24	29	5	25	I	22	-2	2036	20
2017-18	22	28	6	24	2	2 I	-I	2037	20
2018-I9	N/A	27	6.6	24	3.2	20	I. 5	2038	20

Intercultural Development Research Association, 2018
model isthe best fitfornow. Sincethere isn'taclearly discernible cause for a sustained attrition decrease, the current trend might prove to be cyclical, as the other models suggest.

Zero-Attrition Year

The "Years to Zero Rate" column in the table on Page is shows the years the contemporary model predicted attrition would reach zero for the ir forecasting runs. We plotted these forecasted zero-attrition years in the chart on Page 18 to gain further insights about the most likely year attrition won't be an issue.

In the early forecasting years (2008 to 201I), the attrition rate dropped relatively fast, from 3 I percent to 26 percent in three years. As aresult, the predicted zero-attrition year also dropped relatively quickly, from 2044 to 2042 to 2040 to 2038 .

After that period, the attrition rate's downward movement slowed down, occasionally stopping or reverting. Consequently, the zero-attrition yearalso slowed down (2038 to 2037 to 2036 to 2035) and eventually reverted (2035 to 2036 to 2037 to 2038).

It is as if the model distrusts the durability of these recent trepid downward moves. As a result, the predicted zero-attrition year is back to when it was at the end of the first more rapid downward trend, the year 2038. For the zero-attrition year to be significantly closer, the attrition rate's downward trend needs to be firmer.

Forecasted Student Losses

Tounderstand the severity of the situation, we used the three updated forecast models to estimate the number of students to be lost to attrition before the contemporary model predicted rate reaches zero (see table on Page 20).

The historic forecast model predicts a loss of more than 2.28 million students for the next 20 years. The contemporary model yielded a figure of nearly I million (0.95 million), and the medium forecast model more than I .62 million students.

Conclusions

- If we take the full historic values as a guide, the student dropout rate should be expected to increase to 27 percent next year and then remain between 20 percent and 26 percent for the foreseeable future. Under this scenario more than 2.28 million additional students will be lost to attrition by the year 2038.
- If we assume that the current downward trend is real, the result of systemic changes, next year
attrition would drop two additional points to 20 percent. Afterthat, the attrition rate will continue to drop, reaching single digit values in the early 2030s. By 2033, the attrition rate will be about 5 percent, and it will reach zero in the year 2038. However, from now to that point, we would have lost nearly y million (0.95 million) students to attrition.
- Over the medium term, a more realistic model suggeststhat the currentattrition rate will increase to 24 percent before resuming its downward trend. In this scenario, by the year 2038, attrition willstill be o opercent, and during this 20 years, we would have lost more than I .62 million students.
- While the attrition rate has decreased markedly from the appalling values (with percentages in the 40 s) of the i990s, the rate of decrease needs to accelerate for us to attain a breakthrough. If the attrition rate continues to decrease by one or two points with occasional reversals, the zeroattrition rate year will continue to be pushed into the future by one or two years annually and the 20-year barrier to achieve zero attrition will persist.
Therefore, we should expect attrition rates in the range 20 percentto 27 percent for the nextfewyears. We should also expect to lose between 0.95 million and 2.28 million additional students to attrition before we reach a zero attrition, forecasted under the most optimistic scenario, unless this issue is considered seriously by policymakers and systemic changes implemented to ameliorate the problem.

Resources

Johnson, R. (2018). "High School Attrition Rate Drops by Two Percentage Points from Previous Year," Texas Public School Attrition Study 2017-I8 (San Antonio, Texas: Intercultural Development Research Association).
Montes, F. (2017). "Is the Downward Attrition Rate Trend Back on Track? Not Enough to Make a Difference," Texas Public School Attrition Study 20I6-I7 (San Antonio, Texas: Intercultural Development Research Association).

Felix Montes, Ph.D., is an IDRA research associate (felix. montes@idra.org).

We should expect attrition rates in the range 20 percent to 27 percent for the next few years. We should also expect to lose between 0.95 million and 2.28 million additional students to attrition before we reach a zero attrition - forecasted under the most optimistic scenario - unless this issue is considered seriously by policymakers and systemic changes implemented to ameliorate the problem.

Three Decades of Groundbreaking Dropout Research Reflectons by Dr. Robledo Montecel

by Bricio Vasquez, Ph.D.

This year marks the $33^{\text {rd }}$ year that IDRA has published the Texas public school attrition study. First published in 1986 , it was an influential report thatledtocritical public debate oneducation reform and mobilized policymakers in Texas. Since then, one key figure oversaw the development of this key study and observed the effects that actionable knowledge can have on an entire population. In this article, IDRA President \& CEO, Dr. María "Cuca" Robledo Montecel reflects on the history of IDRA's attrition study and its implications for education equity today and beyond.

She recalls, "I came to IDRA in 1976, and it was rather unplanned." Prior to IDRA, Dr. Robledo Montecel worked for two other organizations, Development Associates and the bilingual evaluation program at the University of Texas at San Antonio (UTSA). She describes arriving at IDRA as unplanned because the UTSA center lost is funding, leaving all staff unemployed. Dr. Robledo Montecel was referred to IDRA and was interviewed by Dr. José A. Cárdenas and Blandina "Bambi" Cárdenas (no relation), who subsequently offered her a position as a research assistant at IDRA.

Changing Economy of the 1950s and Later Requires a More Educated Populace

Dr. Robledo Montecel explains that she quickly learned howeducational inequitieswere manifested in schools across San Antonio and the rest of Texas. She worked closely with data as a leader and evaluator at IDRA and saw the differentiated patterns of high school non-completion among minority youth.

She explains: "It was very evident that a fundamental part of educational opportunities for minority students and certainly for Hispanic students had to be increasing the graduation rate. Historically, some school districts in South Texas graduated only io percent of their Mexican American students.

And in the 1950 and '6os, that failure of schools was rationalized by the claim that people were needed to do the work that nobody else would do. So, whether it was working in the fields or cleaning streets or whatever it was that didn't pay well and required a lot of physical labor, the feeling was that somebody hadtodothat.Itwasseen asperfectly fine for students to drop out of school and go do that."

Dr. Robledo Montecel further describes that changes in the economy over time led to a more focused awareness ofthe high school dropoutissue facing the nation. A changing economy demanded an educated workforce, and slowlypeoplebegan to take notice of the undereducation problem.
"As things changed and it became more obvious that we really could not afford to lose that many students before graduating high school. The 'new' economy of the late -196os, ' 705 and early '8os was requiring more and more graduates. It was no longer affordable for businesses or communities in general to lose so many students before they graduated high school."

History told a story of an evolving population and economy that demanded changes to the current educational regime. Dr. Robledo Montecel observed these changes and recognized the need to expand on educational attainment among the U.S. population. Throughout her years at IDRA, there

> The study published by IDRA in 1986 was unlike any dropout study published at the time. Its findings raised the alarm among the public and policymakers and drew much-needed attention to the issue of undereducation in Texas.
were continuous reminders that the condition of educational attainmentforminorities, especially for Hispanics, was not well. More and more, evidence demonstrated that minoritieswere being undereducated in the American educational system.

In Texas, this was evident in the graduation rates among the Hispanic population. In ig68, the U.S. Commission on Civil Rights held a six-day hearing at Our Lady of the Lake University in San Antonio on the civil rights issues of Mexican Americans inthe southwestern United States. Data presented at the hearings revealed that, in i960, the average number of years of formal education for the population 14 years and older was 6.2 years for Hispanics, i0.7 years for Whites, and 8.7 years for Blacks.

Dr. Robledo Montecel reflects on those times: "Those rates became the fundamental basis for school walkouts. Students walked out of schools, like in Crystal City and inSanAntonio'sEdgewood ISD, because they were not being educated, they were being allowed to disappear or were pushed out before graduating. And everyone seemed to be fine with that. And there were very few resources going toward doing something about it."

IDRA's First Dropout Study for Texas Raises Alarms

In the 1970s, the undereducation of youth was not really improving. According to the U.S. Census, the average number of years of formal schooling for people 25 years old and up was 12 years for Whites, io years for Blacks, and seven years for Mexican Americans.

Again, Dr. Robledo Montecel explains, "By the time we got to the early ig80s, there was increasing concern. At the forefront of confronting the issues that were getting in the way of equal educational opportunity, IDRA decided to focus on dropouts and what was being done, or not done, about that."

That historical narrative, coupled with an early, yet distinguished career in educational advocacy, led Dr. Robledo Montecel and a smart team at IDRA, including Dr. José A. Cárdenas (IDRA's founder), Ms. Josie Cortez, Dr. Albert Cortez, Mr. Roy Johnson and Mr. David Ramírez, to conceive of the first research to examine dropouts in the Texas. "IDRA was commissioned to do this first-ever comprehensive statewide study by what is now the Texas Department of Commerce (back then it was called the Texas Department of Community Affairs) and the Texas Education Agency (TEA). Among other things, I was, by then, the director of

> In the i950s and 'bos, some school districts in South Texas graduated only io percent of their Mexican American students.

the IDRA Center for the Prevention and Recovery of Dropouts. And so, this became the first major study of that center. I was asked and agreed to be the principal investigator. In collaboration with some folks in Austin and other places, we conceived of a study that would become the seven-volume Texas School Dropout Survey Project. ${ }^{*}$ The results were published in October of 1986. It was a very quick, very in-depth, multi-method study. Itactuallytook us only six months. So, it was very intense, very deliberate, and very quick."

Figuring out how many students dropped out of school before graduating high school was a challenge at the time. In the ig60s and i970s, most students dropped out of school in middle school or early high school. To determine a true dropout rate, the team would need to identify a cohort of students early in their middle school years and follow them through their high school senior year. No such data existed within TEA's databases. Instead, Dr. Robledo Montecel and her team decided to approximate a dropout rate using an attrition methodology.

She describes how they developed the attrition method still used today, "We looked around and thought, what will we use to answerthis question of what is the dropout rate in Texas? In other words, for high schools in Texas, what is the dropout rate? And, because there were no data, we developed a methodology and a metric. The methodology is an attrition methodology. It uses numbers collected and provided by TEA interms ofoverallenrollment on the initial year, or the baseline year. And then it looks at what would be the senior year for that same group of students using the same data. Then we have a correction for in- and out-migration, taking into account whether the district was losing kids or gaining kids due to population shifts. We correct
for that. And then came up with an attrition rate. This is not the same as a cohort dropout rate."(See definitions guide on Page 60.)

The study published by IDRA was unlike any study published at the time. The results alarmed the public. IDRA found that 86,276 students had been lost from the class of 1986 by high schools across Texas. The study also estimated that losing these students cost the state of Texas upwards of $\$ 17.2$ billion in forgone income, tax revenue, state services and criminal justice costs.

Additionally, the study found stark differences in the patterns of attrition between racial and ethnic groups. According to the ig86 attrition study, the proportion of students lost by race and ethnic category were 27 percent for Whites, 34 percent for Blacks and 45 percent for Hispanics.

Despite the findings of the study and subsequent mobilization by policymakers, the number of students who were lost to schools continued to accumulate over the years. The total students lost between 1986 and 2017 number 3,756,ioI. Out of the 3.8 million students lost over the years, 2 million (55 percent) were Hispanic.

Study Leads to New Major State Policy

The study's findings raised the alarm for policymakers and drew much-needed attention to the issue of undereducation in Texas. In the early years, as the attrition study was published
annually, education professionals and policymakers mobilized to improve educational attainment. Increasinghighschool graduation meantincreasing the quality of life for youth, and it also meant increasing the economic prosperity of Texas and the nation.

Dr. Robledo Montecel describes the actions taken to reverse the Texas dropout problem: "One important and very good reaction, a planned outcome I would call it, is that the legislature acted on it immediately. And that is a sort of difficult thing to obtain."

The Texas legislature passed a measure specifically targeting this issue: "Working with policymakers, we assisted in the development of a way to create metrics. Rep. Ciro Rodríguez, who was in the state legislature then and later became a U.S. congressman, decided to introduce House Bill ioio. It did a number of things. It required that dropout data be collected by school districts and be submitted to TEA for the first time. It required that TEA report those out publicly. It defined, in some way, the metric that was acceptable for measuring dropout rates, so that it was consistent with good practice of educational research but was also consistent with what made good sense. HB ioio also provided dollars for addressing the issue, dollars for school districts. And among those things was a requirement and funding to have a dropout coordinator in every district in the state. And so, there was a kind of a rallying around to address the issue."

Dr. Robledo Montecel with tutors in Puerto Rico. IDRA's research examining the dropout issue also led to new practicies in schools. Under her leadership, IDRA's innovative dropout prevention program, the Coca-Cola Valued Youth Program, was launched in 1984 and has made a visible difference in the lives of more than 795,000 children, families and educators.

IDRA's Texas Dropout Survey Project

*The first dropout study for Texas included the following components:

- Texas Dropout Survey Project: A Summary of the Findings (Cárdenas, J.A., Robledo, M., \& Supik, J.)
- Vol. r: Magnitude of the Problem - Census Analysis (Waggoner, D.)
- Vol. 2: Magnitude of the Problem - Attrition Analyses (Cárdenas, J.A., Robledo, M., Supik, J., Johnson, R.L.)
- Vol. 3: Magnitude of the Problem - School District Research and Procedures (Cárdenas, J.A., Robledo, M., Supik, J., Cortez, A.)
- Vol. 4: Magnitude of the Problem - School District Research and Procedures (Cárdenas, J.A., Robledo, M., Supik, J., Cortez, A.)
- Vol. 5: Benefit-Cost Impact of the Dropout Program (Cárdenas, J.A., Robledo, M., Supik, J., Ramírez, D.)
- Vol. 6: Program Responses - Their Nature and Effectiveness (Cárdenas, J.A., Robledo, M., Supik, J., Cortez, A., Ladogana, A.)
- Vol. 7: Study Methods and Procedures (Cárdenas, J.A., Robledo, M., Supik, J.).

The State Moves from Taking Action to Making Excuses

In subsequent years, after the attrition study had been published several years, public officials and school districts shifted their attitudes away from owning the issue and doing something about it, to making excuses and justifying high dropout rates. To some degree, this shifting of attitudes happened because school districts were now being heldaccountableforlosing students, and there were emerging consequences for them if improvement did not continue. What was initially a marshalling of attention to solving the dropout problem later turned into an exercise on justifying dropouts on behalf of school districts, which continues to this day.

Dr. Robledo Montecel explained: "As TEA began to disseminate their information regularly, it began to dawn on some people that this was showing the underside of education in the state of Texas in a way it never had before, because it was giving us real numbers about what was happening. And I think that as that continued, state and school districts moved toward a justification of the data rather than a utilization of the data to address the problem and create solutions."

According to Dr. Robledo Montecel, the justifications for the dropout problem were widespread and diverse. TEA began to record schooldropouts differently than ithad wheninitially compelled by the state legislature. School districts were instructed to report numbers of students who had dropped out, to not count students who may have gone to another state or "back to Mexico." They were told not to count students who dropped outtogeta GED orwere being held in a correctional facility. They could claim a student had moved to a different school district without notifying their current school district, even without the home schoolverifying anything. Many ofthese "reasons" for students leaving school are excluded from the overall denominator in the high school dropout rate reported by TEA. These reasons are reported as "leaver codes," and they create a data artifact or an artificial reduction in the dropout rate. (See the current list of leaver codes on Page 49.)

For several years, IDRA urged state policymaking bodies toupgrade the state'sown dropoutreporting process. In 2002, Dr. Robledo Montecel testified before the Texas State Board of Education, stating "As the agency's dropout estimates have declined over the last decade, so has the credibility of its dropout reporting... This state can continue to
delude itself by resorting to tricks like cumbersome definitions and unwieldy reporting and counting systems, or we can simplify the process so that it is both understandable and believable. Texas needs diplomas, not delusions."

The following year, the Texaslegislature mandated the state to use the NCES definition in the computation of the dropout indicator beginning the 2005-06 school year. The state also simplified its leaver code system in part by cutting the number of codes by more than half.

In addition, there have been numerous efforts by researchers and policymakers to explain away the undereducation of poor and minority youth. Commonly, researchersemployadeficitframework that leads to faulty results. Dr. Robledo Montecel put this in direct language when describing the results of a recent study she recently read: "They conclude that io percent of schools in the country continue to have these inordinately high dropout rates and that those schools, they assert, largely are majority-minority and that those are the schools with the highest dropout rates. And so, that's a fact, that's what they find. What is not a fact, but rather an interpretation, is that the reason that this happens is because the kids are poor. Well, there is no causal effect between being poor and dropping out of school that I have ever seen."
"Being poor does not erase a child's ability to learn and succeed. It just doesn't," she adds.

This deficit framework blames individual student characteristics as the reasons behind their lack of success within a culturally mismatchededucational

> Education is, of course, useful to the individual, but it is also part of the public good.

system. Dr. Robledo Montecelfurtheremphasizes: 'The reason that those explanations don't make sense is because there are poor schools that do a good job with poor students. And we as a country have not bothered to see what it is that has them do a good job. In other words, what are the variables that schools have control over that will have an impact on outcomes for schools? It does educators no good to talk about, 'Well the kids are poor and therefore we cannot do anything.' It takes the agency completely out of the educator. It takes the agency completely out of the schools. And it's completely useless."

She adds, "When some folk figured out they can't speak in ways that blame school failure on a particular race or ethnic group, they swapped it out with students' economic status to make it sound more palatable and studious."

Itis now 33 years after the initial study ofdropouts in Texas, andthere is stillmuch work to bedonetoward achieving universal high school graduation. The attrition study from 1986 has been replicated every year since then with consistent methodology and has shown that dropout rates have slowly declined over the years, though gaps remain and some are even worse. "We have to keep focusing attention on the issue in order to make any progress at all."

The New Assault on Public Education

When asked whatelseneeds attention, Dr. Robledo Montecel states that there is one major issue that rises to the top, and that is the movement against supporting publiceducation. "We cannotgive into the assault on public education. That is something that did not exist in any real way in Ig 86 when we did the Texas Dropout Survey Project, or in 1973 when IDRA started. There was, in those days, a fundamental buy-in for public education."

In recent years though, there has been little effort to empower public schools. For example, there has been increased dialog on providing vouchers for private schools and setting up charter schools at the expense of public schools. And public schools have experienced diminishing resources due to the increasing number of charter schools. This has diminished public schools' ability to serve all students equally. And it removes the community oversight for what happens to their students.

Inherletterintroducing IDRA's2017 annualreport, Dr. Robledo Montecel quotes Chief Justice Earl Warren in his majority opinion in Brown v. Board of Education: "Education... is a right which must
be made available to all on equal terms."
She says: "Education is, of course, useful to the individual, but it is also part of the public good. If you look at the dropout rate and consider the cost of not educating the 86,276 students who didn't graduate that first year of our study and if you consider that the state of Texas lost \$17 billion in forgone income over the course of a lifetime of these students, it's very clear that education is not just a private good, that it is for the common good."

Dr. Robledo Montecel explains: "The attempts to deal with education in ways that blame the poor for school failure, or that allow the state to grossly underfund public education, or that turn over the role of education to private interests who pretend to 'rescue' some kids at the expense of everyone else are all doomed to fail the people of Texas. Instead, we need courageous leadership at all levels to examine data honestly and to create solutions that work for all children."

This is the final year of Dr. Robledo Montecel serving as President \& CEO of IDRA after 26 years ofservice. Sheprovides a roadmap for moving forward with the work for education equity at IDRA. Among other things, she stresses the need to advocate for strong public schools and to work across different sectors.
"IDRA's evolving and growing ability to work across research, policy and practice is crucial and is part of what I think gives IDRA's work its value added. Most organizations are either research organizations or they are policy organizations or they are practice organizations, working with educators and providing technical assistance. We do all of that. And, importantly, we are work across silos, applying interdisciplinary thoughts to what we do. So that the research affects our policy work, and our practice comes back very quickly and informs what we are doing with regards to policy and with regards to research. And I think that if we deepen those links and truly do interdisciplinary, inter-sector, inter-perspective work that our work will continue to get stronger."

The 33 years of IDRA's attrition studies themselves archive a historical pattern of education access in the state of Texas. The attrition study emerged as a need to solve an emerging workforce problem in the i970s and ig80s but also provided a lens into how education structures in Texas work to subjugate marginalized youth and reproduce social inequalities. She developed the IDRA Quality Schools Action Framework to guide schools and

Our future depends on us having an excellent public educational
> system, where all students graduate from high school prepared for college or the world of work, no matter what the color of their skin, the language they speak, or where they happen to be born.

communities in focusing on keyleverages points to improve their schools and ensure every subgroup of students has access to high quality education.

Dr. Robledo Montecelstates,"Ithink thatthefuture has to look like meeting the promises that we make to kids and meeting the promises that we make to each other as a country, about what we stand for."

She believes that what we stand for as a country with regardstoeducation is critical: "Ourfuture depends on us having an excellent public educational system, where all students graduate from high school prepared for college or the world of work, no matter what the color of their skin, the language they speak, or where they happen to be born. And this is a goal I believe we can achieve."

Bricio Vasquez, Ph.D., is IDRA'seducationdata scientist (bricio. vasquez@idra.org).

--------------- Zero Tolerance

There is no research to support that zero tolerance makes schools any safer. Suspension and other exclusionary discipline practices have been linked to a higher likelihood of dropping out or not graduating on time. Minority students, particularly Black students, are disproportionately subject to exclusionary discipline practices. Keeping students out of the classroom only halts their learning.

See zero tolerance article https://budurl.me/IDRAzero

In-grade Retention

Retained students have a 14 percent to 50 percent higher risk of dropping out, and the risk increases to 90 percent for those who have been retained twice. Young children who are expelled or suspended are up to 10 times more likely to drop out, experience academic failure and grade retention, hold negative school attitudes, and face incarceration.

See in-grade retention article: https://budurl.me/IDRAaprisc

--- Low Funding \& Insufficient Support for ELs ---

English learners are among the most likely to drop out. They are the fastest-growing segment of students, but they are one of the lowest academically performing, and the achievement gap widens as students progress through school. Texas is significantly underfunding EL education, and only two of five teachers of ELs are fully certified. Only one out of 10 ELs is prepared to go to college.

See IDRA EL report https://budurl.me/2-IDRAelliski5p
See this infographic online and share! https://idra.news/6Policies
\qquad

-------- Unfair \& Insufficient Funding

To be effective, schools must have quality teaching and rigorous, up-to-date curricula. Schools depend on fair funding to serve all of their students each school day. Equitable funding makes a difference. In Texas, poor school districts have had attrition rates that were more than double those of high-wealth districts.See Fair Funding for the Common Good http://b.link/IDRAffcgW

-- Watered-Down, Non-College Prep Curricula --.

Research shows that expectations of students' abilities to succeed are "vital" to their education. For example, students whose parents had not gone to college were themselves 3 to 6 times more likely to enroll in a university if they'd taken rigorous higher math courses in high school. One district took high expectations district-wide by considering all students college-material and teaching them accordingly. They cut dropout rates in half and increased college-going rates.See College Bound report http://budurl.com/IDRAcbd

------- Testing that is High-Stakes

A large body of research says that one test should never be used as a sole criterion for high-stakes decisions about students. Reliance on a single measure fails to consider multiple factors that impact achievement. In 2017, 11,422 Texas seniors who failed at least one exam were able to graduate when a temporary policy let school officials consider their course grades and other factors.

It doesn't have to be this way

www.idra.org facebook.com/IDRAed
Intercultural Development Research Association • 5815 Callaghan Road, Suite 101 • San Antonio, Texas 78228•210-444-1710 November 2018

See this infographic online and share! https://idra.news/6Policies

Timeline for the Class of 2018
 What has happened as the Texas Class of 2018 progressed through school?

When children in the Class of 2018 were prekinder kids, the No Child Left Behind Act went into effect. As we look at their attrition rates by the time they would become high school seniors, we pieced together a sense of the history these young people may have experienced.

For example, during their school years, there was an increase in charter schools, and a number of affluent children never saw a public school classroom. The Class of 2018 was more segregated by income and race/ethnicity than many classes that came before them. The changing nature of education with technology and the new phenomenon of cyberbullying also were notable since these kids have mostly known technology as user-friendly and oriented toward social media and gaming from the start.

While this is not an examination of causal factors, we do point out sticking points along the way that research shows lead to higher dropout rates.

1999-00 2000-01 2001-02 2002-03

No Child Left Behind Act

In 2002, the update to the Elementary and Secondary Education Act was officially signed into Iaw as No Child Left Behind (NCLB). It sought to advance U.S. competitiveness and to close the achievement gaps between poor and minority students and their peers. It increased the federal role in holding schools responsible for the academic progress of all students, with a special focus on traditionally underserved students. These students included English learners, special education students, and poor and minority children. States did not have to comply with the new requirements, but they risked losing Title I money. NCLB was taking effect when the Class of 2018 was getting ready to start preschool.

iPhone \& Social Media

On June 29, 2007, the first-generation iPhone launched and, with it, the way adults and children interacted with data, media and each other gradually changed. The Class of 2018 would have been preparing to enter second grade during that summer, and from then on they grew up with smartphones and ever-changing technology at their fingertips (or at least at the fingertips of those who could afford it). As these children grew, the technology became more refined and, generally, more affordable. With the advent of Web 2.0 and increasingly sophisticated gadgets, education has had to change and adapt. For example, social media and constant connectivity have created an increase in collaboration and instant research. On the other hand, there is greater potential for cheating and insidious bullying.
See this infographic from The Atlantic on How the Internet Is Changing the Way We
Learn: https://budurl.me/AtlanticIG11

4x4 Rigor
In 2006, Texas established a " 4×4 " graduation plan, requiring all students to earn four credits in English, math, science and social studies. Though the Class of 2018 was in early elementary school during this time, the new rigorous requirements affected the rigor at all levels of the educational pipeline, especially in contrast to the degree requirements the state instituted in 2013.

School Funding Cuts

In 2011, Texas lawmakers cut $\$ 6.4$ billion from public education and 12,000 teachers lost their jobs. Texas was the second richest state in the country (in gdp) but ranked $47^{\text {th }}$ in revenue raised per capita. And the cuts were made in ways that hurt the poorest schools the hardest. The number of elementary classes exceeding the 22 -student cap ballooned to 8,479 from 2,238 the prior year. By the end of that year, Texas would be in the midst of the largest school finance lawsuit in the state's history. Over 500 school districts enrolling three-fourths of Texas school children, as well as parents, students, the Texas Charter School Association and others, sued the state for failing to ensure a quality education for all students. About a year later, the Texas District Court, Judge John Dietz presiding, ruled that the Texas school finance system was "inefficient, inequitable and unsuitable." But students in classrooms would not see any changes yet as the litigation continued.
\qquad
\qquad

STAAR Testing
In 2012-13, the Class of 2018 took the STAAR test. Average scores for all $7^{\text {th }}$ graders ranged from 70\% to 77% passing. But passing rates were even lower for English learners (61% to 69%) and low-income students (30% to 49\%).

Texans were becoming more aware of how prevalent aware of how prevalent
bullying was becoming in the digital age. 2011 marked Texas' adoption of HB 1942 that required school districts to set their own policies against bullying. Policymakers said "expression through electronic means" can be considered bullying if it occurs at school, in a district-operated vehicle or at a school-related activity. The law did not address off-campus behaviors (e.g., videos or social media posts) that impact a student's school life.

New Anti-Bullying Law

©

Internet Access

According to Broadband Now, there were 3.7 million people in Texas without access to a wired connection capable of 25 mbps download speeds, 4.0 million people in the state had access to only one wired provider, and another 1.6 million people in Texas didn't have any wired Internet providers available where they lived in 2012. With technology and social media's more prevalent role in academia, especially for fundamental activities, such as researching, the fact that there were so many Texans without access to the Internet impacted the Class of 2018 negatively, particularly low-income students.

Homeschooling

The homeschooling rate increased from 1.7\% in 1999 to 3.4% in 2012. By 2012, there were 1.8 million homeschooled students - most of whom were classified as White (83\%) and "nonpoor" (89\%).

Early College

Of the options available to the Class of 2018, some students were able to enroll in public Early College High Schools at 153 campuses in 35 counties to ensure college readiness from the start of their high school careers. These programs served 85% minority and 75% low-income students. Students of color who attend ECHSs are nearly 10 times more likely to obtain a college degree.

Bullying at School

As the Class of 2018 headed to high school, they would face an environment unfamiliar to previous generations. In 2014, 28\% of U.S. high school students were bullied at school. In one month, nearly 6\% of high schoolers stayed home because they felt unsafe at or on their way to school; 71% of young students had seen bullying at school with about 30% admitting to bullying others. In 2011, 9 out of 10 teenagers had witnessed cyberbullying while they were using social media.

Weakened Graduation Rigor

In 2013, the Texas Legislature overhauled degree requirements for the state with HB 5 . This new program instituted a mandatory 22 credits, with four additional credits chosen as part of "endorsements" that students select to represent potential careers or academic interests (STEM, Business and Industry, Public Service, Arts and Humanities, and Multidisciplinary Studies). Algebra II and other college prep courses were no longer required. The Class of 2018 was affected during the transition with many directed to graduate under the new program and some steered away from college prep curriculum.

Unaccompanied Minors

In June of 2014, before the new school year began, more than 10,600 unaccompanied minors crossed the border from Central America, fleeing violence. The next year, another 10,500 would arrive. These children not only represented a humanitarian crisis, but many also would become classmates to children in all levels of education.

Private Schools

About 5.7 million students (or 7\%) were enrolled in private schools nationally in 2014-15. This was a decrease from 9\% in 1995-96 and is projected to continue to decrease to 6% by 2025-26. In Texas, the most recent data indicate 1,911 private schools serve 316,627 students. Enrollment of students of color is at 39%, well short of their proportion in public schools (72\%).

In 2014-15, ninth graders had the highest retention rate among 7-12 graders, at $8.6 \% ; 34,644$ students were retained in the Class of 2018's freshman year. Black students and Hispanic students had higher retention rates than their White counterparts in every grade except kindergarten.
8.6\%
retention rate for all $9^{\text {th }}$ graders

Low Income

English Learners

Immigrant Migrant

PSAT Taking The 2015-16 school year was the first time the redesigned PSAT tests were offered to students. The following year, 241,229 students (65\%) in the Class of 2018 took the PSAT. And 66\% of these test-takers were underrepresented minority students. In total, 43% of Texas $11^{\text {th }}$ graders took the PSAT/NMSQT.

STAAR Testing

In high school, the STAAR takes the form of end-of-course exams.

Charter Schools

From the Class of 2018's first birthday to their sophomore year in high school, the percentage of charter schools increased from 2\% to 7\%, totaling 6,950 charter schools in 2015-16. That year in Texas, 3,864 sophomores (6.1\%) attended charter schools. IDRA's study in 2017 found that Texas charter schools had graduation rates of only 62% compared to 90% in traditional public schools.

Exclusionary Discipline

Exclusionary discipline rates are disproportionately higher for minority students, low-income students and students in special education. From 2005-06 to 2015-16 in Texas, Black students in all grades received in-school suspensions nearly two times the rate they comprised in the total population. While numbers of disciplinary actions have been declining in recent years, in 2015-16 there were 790,091 exclusionary discipline actions across the state. Students as young as 6 years old were removed from their kindergarten classes and sent to DAEPs for "discipline" problems. Many of their DAEP teachers were not qualified to teach them, and those who were qualified were unable to coordinate with the students' sending schools.

- Percent of Population Out-of-School Suspensions

Hurricane Harvey

Just as their senior year was beginning, Hurricane Harvey caused catastrophic damage to the state's coast and communities inland, particularly in the counties that make up the city of Houston. About 112,000 students were displaced by the storm, 22,000 children were made homeless and more than 300 school districts took in students who had been displaced.

SAT \& ACT Testing

For many, the Class of 2018's junior and senior years include an emphasis on testing to prepare for college. In Texas, 66\% of students took the SAT, with a total average score of 1032 (out of 1600). Only 40\% met college and career readiness benchmarks.

English Learners

One in six Texas students is an English learner - the fast-growing subgroup in the state. But those in middle and high school - many of whom only get 45-minute ESL classes each day - do poorly. They drop out at twice the rate of the larger student population, and are retained at rates consistently double that of their peers. Texas has continuously reported EL teacher shortages since the 1990s.

College Readiness

Data are not yet available for the Class of 2017, but for the Class of 2016, 39\% were considered college-ready graduates, including just 25% of low-income students and 9\% of English learners.

Students Lost

IDRA's annual Texas public school attrition study, found that Texas public schools still are failing to graduate one out of every five students; 94,767 students were lost from the Class of 2018; Hispanic students and Black students were about two times more likely to leave school than White students.

IGC Graduates

With a fairly new policy, students who have completed all requirements and do not pass one or two of the end-of-course exams may still graduate if approved by an individual graduation committee (IGC). Data are not available for the Class of 2018, but in the previous class, 11,422 were approved for graduation, with low-income, Hispanic and Black students benefiting most.

Well-Being

As the Class of 2018 moves toward adulthood, it is helpful to look at the larger circumstances of childhood in Texas:

- Over 7.4 million children live - One in 5 Texas children live in in Texas, which is 1 in 10 in the country.
- One in 4 Texas kids live with at least one non-citizen parent (including authorized residents). Of those children, 90% are U.S. citizens.
poverty. Black and Hispanic children are disproportionately likely to live below the poverty line.
Texas spends 21% less per child on programs to keep students on track than a decade ago.

Citations for Timeline for the Class of 2018

Bullying at School: NoBullying.com. (April 2017). Bullying Statistics: The Ultimate Guide. https://nobullying.com/bullying-statistics/
Charter Schools (10 ${ }^{\text {th }}$): NCES. (March 2017). Public Charter School Enrollment. https:// nces.ed.gov/programs/coe/indicator_cgb.asp
Texas Education Agency. (2016). Enrollment in Texas Public Schools 2015-16. https://tea. texas.gov/acctres/enroll_2015-16.pdf

IDRA. (2018). Ready Texas - A Study of the Implementation of HB5 in Texas and Implications for College Readiness. http://www. idra.org/wp-content/uploads/2018/05/ Ready-Texas-A-Study-of-the-Implementa-tion-of-HB5-in-Texas-and-Implications-for-College-Readiness-by-IDRA-May-2018.pdf

College Readiness: Texas Education Agency. (2017). Texas Academic Performance Report: 2016-17 State Performance. https://rptsvr1. tea.texas.gov/perfreport/tapr/2017/state.pdf
Early College: Educate Texas. Early College High Schools.
English Learners (K): Texas Education Agency. (2007). Enrollment in Texas Public Schools 2005-06. https://tea.texas.gov/acctres/ Enroll_2005-06.pdf

Texas Education Agency. (2018). Enrollment in Texas Public Schools 2017-18. https://tea. texas.gov/acctres/enroll_2017-18.pdf

English Learners (12 $\left.{ }^{\text {th }}\right):$ IDRA. (June 2015). New Research on Education of English Learners in Middle School and High School. IDRA. http://www.idra.org/images/stories/Proceedings_FullPub_06052015.pdf
Enrollment Growth: Texas Education Agency. (2012). Enrollment in Texas Public Schools 2011-12. https://tea.texas.gov/acctres/ Enroll_2011-12.pdf

Exclusionary Discipline: Johnson, R.L. (October 2016). "Zero Tolerance Policies Likely Contribute to High Attrition Rates of Black Students and Hispanic Students," Texas Public School Attrition Study, 201516. IDRA. http://www.idra.org/wp-content/ uploads/2016/11/IDRA-Discipline-Article-2016. pdf
Texas Education Agency. (2018). Discipline Reports. https://tea.texas.gov/Reports_and_ Data/Student_Data/Discipline_Data_Products/Discipline_Reports/
1st Grade Population: Texas Education Agency. (2009). Enrollment Trends 2007-08. https:// tea.texas.gov/acctres/Enroll_2007-08.pdf
Foster Care: The Annie E. Casey Foundation. (2017). Kids Count Data Center. http://datacenter.kidscount.org
Homeschooling ($\left.3^{\text {rd }}\right)$: Princiotta, D., Bielick, S., \& Chapman, C. (2006). Homeschooling in the United States: 2003. National Center for Education Statistics. https://nces.ed.gov/ pubs2006/2006042.pdf

Homeschooling ($6^{\text {th }}$): Redford, J., Battle, D., Bielick, S., \& Grady, S. (April 2017). Homeschooling in the United States: 2012. NCES. https://nces.ed.gov/pubs2016/2016096rev. pdf
Hurricane Katrina: Turner, A. (2015). "Ten Years Later, Katrina Evacuees Now Part of Houston Fabric," Houston Chronicle. http://www. houstonchronicle.com/news/houston-texas/ houston/article/Ten-years-later-Katrina-evac-uees-now-part-of-6458412.php

IGC Graduates: Texas Education Agency. (October 2018). Grade-Level Retention in Texas Public Schools, 2013-14. https://tea. texas.gov/acctres/retention_2016-17.pdf

In-Grade Retention (1st): Texas Education Agency. (2008). Grade Level Retention Data, 2006-07. https://tea.texas.gov/acctres/ Retention_2006-07.pdf
In-Grade Retention (9 ${ }^{\text {th }}$): Texas Education Agency. (March 2017). Grade Level Retention in Texas Public Schools, 2014-15. https://tea. texas.gov/acctres/retention_2014-15.pdf
Internet Access: Reese, N. (October 2017). Texas's Broadband: Stats \& Figures, web page. https://broadbandnow.com/Texas
iPhone \& Social Media: Jackson, N. (August 18, 2011). "How the Internet Is Changing the Way We Learn," The Atlantic. https://www. theatlantic.com/technology/archive/2011/08/ infographic-how-the-internet-is-changing-the-way-we-learn/243708/

New Anti-Bullying Law: Chiquillo, J. (April 2015). "Bullying Proves a Vexing Problem for Texas Schools," Dallas Morning News. https://www.dallasnews.com/news/educa-tion/2015/04/26/bullying-proves-a-vexing-problem-for-texas-schools
Private Schools (9 ${ }^{\text {th }}$): NCES. (March 2017). Private School Enrollment. https://nces. ed.gov/programs/coe/indicator_cgc.asp;
Private School Review. Texas Private Schools, web page. https://www.privateschoolreview. com/texas

PSAT Taking: College Board. (2017). SAT Suite of Assessments Annual Report: Texas. https:// reports.collegeboard.org/pdf/2017-texas-sat-suite-assessments-annual-report.pdf
Sat \& ACT Testing: Cheng, A. (September 2017). "Average SAT Scores by State (Most Recent). Prep Scholar. https://blog.prepscholar.com/ average-sat-scores-by-state-most-recent; Edwards, H. (August 2017).
Average ACT Scores by State (Most Recent). Prep Scholar. https://blog.prepscholar.com/ act-scores-by-state-averages-highs-and-lows

College Board. (2017). SAT Suite of Assessments Annual Report: Texas. https://reports. collegeboard.org/pdf/2017-texas-sat-suite-assessments-annual-report.pdf

School Funding (1st): Cortez, A. (2009). The Status of School Finance Equity in Texas - A 2009 Update. IDRA. http://www.idra. org/images/stories/IDRA_Fair_Funding_ Update_2009.pdf
School Funding: (11 ${ }^{\text {th }}$) IDRA. (2017). Fair Funding for the Common Good, web page. IDRA. http://www.idra.org/education_policy/fair-funding-common-good/

School Funding Cuts: IDRA. (2011) Fair Funding Now!, website. http://www.idra.org/educa-tion_policy/fair-funding-now/
STAAR Testing ($7^{\text {th }}$): Texas Education Agency. (January 2015). 2014 Comprehensive Annual Report on Texas Public Schools. https:// tea.texas.gov/acctres/Comp_Annual_Biennial_2014.pdf
STAAR Testing (10 ${ }^{\text {th }}$): Texas Education Agency. (March 2017). 2016 Comprehensive Biennial Report on Texas Public Schools. http:// tea.texas.gov/acctres/comp_annual_biennial_2016.pdf
Students Lost: Johnson, R. Texas Public School Attrition Study, 2017-18. IDRA. http://www. idra.org/research_articles/attrition-dropout-rates-texas/

TAKS Testing: Texas Education Agency. (December 2009). 2009 Comprehensive Annual Report on Texas Public Schools. https://tea. texas.gov/acctres/Comp_Annual_2009.pdf

Unaccompanied Minors: Markon, J., \& Partlow, J. (December 2015). "Unaccompanied Children Crossing Southern Border in Greater Numbers Again, Raising Fears of New Migrant Crisis," The Washington Post. http://wapo.st/1P7wP98?tid=ss_mail\&utm_ term=.932b0c1364f1

Well-Being: Center for Public Policy Priorities. (2018). State of Texas Children The Road to a Brighter Future. http://forabettertexas.org/ images/KC2018_SOTCReport_web.pdf
Sarah Bishop contributed to this timeline project.

Texas public schools are losing 1 out of 5 students

It has taken over 33 years to improve by 11 percentage points: from 33% to 22%.

Universal high school graduation is two decades away

Texas has lost 3.8 million students since 1986.
We stand to lose another 2.3 million students.
Attrition Rate $=\mathbf{2 2 \%}$
Attrition Rate $=0 \%$
Actual, 2017-18
Projected at Current Pace, 2037-38

2015	2020	2025	2030	2035
to doesh't have to be this way				
www.idra.org• www.facebook.com/IDRAed				

All children are valuable; None is expendable

See this infographic online and share! https://idra.news/Attritionı8

An IDRA report showing what happens when a school district raises expectations for students instead of lowering them

PSJA Proves that a School District Can Assure that All Students are College Bound

IDRA's report, College Bound and Determined, shows how the Pharr-San Juan-Alamo school district in south Texas transformed itself from low achievement and low expectations to planning for all students to graduate from high school and college.

With funding from TG Public Benefit (TG), IDRA examined data and conducted interviews with PSJA Superintendent Dr. Daniel King, school principals, teachers, counselors and students to explore how PSJA has achieved the kind of success that it has. IDRA saw that PSJA's vision and actions, clearly and independently aligned with IDRA's own vision for change: the Quality Schools Action Framework ${ }^{\text {TM }}$.

This change theory focuses on what research and experience say matters: parents as partners involved in consistent and meaningful ways, engaged students who know they belong in schools and are supported by caring adults, competent caring educators who are well-paid and supported in their work, and high quality curriculum that prepares students for 21st Century opportunities.

PSJA..

- Doubled the number of high school graduates
- Cut dropout rates in half
- Increased college-going rates.

In fact, half of the district's students are earning college credit while still in high school.
"Our vision can be boiled down to the phrase, College ${ }^{3}$, meaning that all students will be College Ready, College Connected and will complete College."

- Dr. Daniel King, PSJA Superintendent
"You notice that there is no deficit thinking and no excuses in this approach. There is no students-cannot-learn or parents-don't-care or they-do-not-speak-English or we-can't-do-it,-we-have-too-manyminorities, or they're-not-college-material. Instead, at PSJA, you find thoughtful, data-based, coherent plans that connect K-12 with higher education and community to improve educational opportunities for all children."
- Dr. María "Cuca" Robledo Montecel, IDRA President

[^3]
Texas' Large Economically Disadvantaged Student Population Hit Hard by High School Attrition

by Roy L. Johnson, M.S., and Charles Cavazos

For the first time, IDRA's study explores the relationship between attrition rates in Texas and socio-economic status. When assessing the educational outcomes of students, economic status or poverty of students is often claimed as the primary reason or contributor for adverse outcomes, such as inadequate school readiness, poor academic performance, higher risk of dropping out of school, lower graduation rates, food insecurity, lower future earnings, and the list goes on and on. In a performance audit of K-I2 education, the U.S. Government Accountability Office (GAO) concluded that poverty has an adverse effect on children from early childhood throughout the educational pipeline.

This article presents data from a national and statewide perspective on attrition rates of economically disadvantaged students and examines the issue in terms of school district property wealth.

Texas Ranks Second in On-Time Graduation Rates of Economically Disadvantaged Students

Texas is among 21 states - 15 in the South and six in the West - who have a large proportion of public school students who live in poverty (see table on Page 44). The Southern Education Foundation reports that a large proportion of public school students in the United States, particularly in the South and West, grow up in poverty and encounter a range of educational challenges (2015).

The economic or poverty status of a child correlates negatively with school readiness, school achievement, school completion, educational attainment and future earnings. According to an article from Child Fund International, children
who grow up in poverty complete fewer years of schooling and are a greater risk to drop out of school (CFI, 2013).

IDRA looked at the graduation rates of students identified as economically disadvantaged (the proxy indicator for low income) in the United States, Texas and other states (NCES, 2018b). Economically disadvantaged students are defined as those students who are eligible for free and reduced priced meals programs based on federal guidelines.

Texas ranked second out of 50 states and the District of Columbia on the federal measure of on-time graduation rates of economically disadvantaged students in public schools based on the latest adjusted cohort graduation rate (ACGR) data released for 2015-16 (NCES, 2018a). Texas had an ACGR for economically disadvantaged students of 86.0 percent compared to the national average of 77.6 percent in 2015-16 (See Page 43).

Major Findings

Major findings of the latest NCES study on the adjusted cohort graduation rates of economically disadvantaged students include the following (also see the tables on the following pages).

- Economically disadvantaged students graduate at rates lower than the national average for all students. The adjusted cohort graduation rate for all students was 84.I percent in 2015-16 compared to 77.6 percent for economically disadvantaged students.
- The adjusted cohort graduation rate for economically disadvantaged students was 77.6 percent in 2015-16 and ranged from a low of 66.7 percent in Nevada to a high of 87.7 percent in South Carolina.
- Twenty-two of the reporting states had rates

Texas is among $2 I$ states who have a large proportion of public school students who live in poverty... Texas had an adjusted cohort graduation rate for economically disadvantaged students of 86.0 percent compared to the national average of 77.6 percent in 2015-I6.
equal to or higher than the national economically disadvantaged average of 77.6 percent - Alabama, Arkansas, California, Hawaii, Indiana, Iowa, Kentucky, Maine, Maryland, Massachusetts, Mississippi, Missouri, Nebraska, New Jersey, North Carolina, Pennsylvania, South Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia.

- In 2015-16, Texas ranked second among the 50 reporting states and the District of Columbia with a rate of 86.0 percent. From 2014-15 to 2015-I6, the Texas ACGR ranking for economically disadvantaged students fell from first to second.
- Twenty-eight of the 50 reporting states and the District of Columbia had rates lower than the national economically disadvantaged average of 77.6 percent - Alaska, Arizona, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Idaho, Illinois, Kansas, Louisiana, Michigan, Minnesota, Montana, Nevada, New Hampshire, New Mexico, New York, North Dakota, Ohio, Oklahoma, Oregon, Rhode Island, South Dakota, Utah, Washington, Wisconsin, and Wyoming.

Texas ranked high among states in the graduation rates of economically disadvantaged students and outpaced the national average. Despite these outcomes, there is still reason for concern as it is universally accepted that economically disadvantaged students graduate at rates less than noneconomically disadvantaged students and drop out of school at greater rates. Additionally, Black and Hispanic students have higher economically disadvantaged rates and lower graduation rates than Whites.

Economically Disadvantaged Students in Texas Public Schools

According to data compiled by TEA, about six out of io students in Texas public schools are identified as economically disadvantaged. This section presents data on enrollment, attrition rates, dropout rates and graduation rates of students identified as economically disadvantaged for Grades 9-12.

Growing Public School Enrollment

Public school enrollment in Texas continues to grow. Between 2011-I2 and 2017-18, the Texas student population grew 8 percent with a student population of about 5.4 million students in 2017-18 (see able above). The one-year change in student population from 2016-17 to 2017-18 showed an increase of 0.8 percent or 40,555 students.

Economically Disadvantaged Student Enrollment in Texas Public Schools

Year	All Students	Number of Economically Disadvantaged Students	Percent Economically Disadvantaged Students
$2011-12$	$4,998,579$	$3,013,442$	60.3
$2012-13$	$5,075,840$	$3,058,894$	60.3
$2013-14$	$5,151,925$	$3,096,050$	60.1
$2014-15$	$5,232,065$	$3,073,300$	58.7
$2015-16$	$5,299,728$	$3,122,903$	58.9
$2016-17$	$5,359,127$	$3,159,327$	59.0
$2017-18$	$5,399,682$	$3,168,294$	58.7

Data source: Texas Education Agency, Office of Academics, Division of Research and Analysis, Enrollment in Texas Public Schools, 2017-18
Intercultural Development Research Association, 2018

The race-ethnicity composition of Texas public schools continued to change with increasing enrollment of each group, except for White and American Indian students. According to TEA, the Hispanic student population exceeded that of White students for the first time in 200I-02 and continues to increase as the White student population decreases. In both 2016-17 and 201718, Hispanic students comprised 52.4 percent of total public school enrollment.

Economically Disadvantaged School Enrollment

Between 20II-I2 and 2017-18, the number and percent of Texas public school students identified as economically disadvantaged exceeded those who were not economically disadvantaged. For each year between 201I-I2 and 2017-18, about six of every io students were identified as economically disadvantaged. About 3.2 million of the state's 5.4 million students were identified as economically disadvantaged in both 2016-17 and 2017-18 (see table on Page 39).

Hispanic students constitute about two-thirds of the 3.2 million Texas public school students identified as economically disadvantaged (see table on Page 39). Across race-ethnicity groups in the 2017-18, the percentage of public school students identified as economically disadvantaged included 66.6 percent for Hispanic students, 15.3 percent for Black/African American students, I3. 8 percent for White students, 2.1 percent for Asian/Pacific Islander students, I. 7 percent for multiracial students, and 0.4 percent for American Indian students.

Economically Disadvantaged Attrition Rates

TEA reports attrition rates for economically disadvantaged students for grades $7-8$, grades $9-12$, and grades $7-12$. TEA defines an attrition rate as the percentage change in fall enrollment between two grades across years. The attrition rate reported by TEA does not account for growth or declines in student enrollment.

For the 2016-I7 school year, TEA reported a statewide attrition rate of I 8.5 percent for all students, a 3 I. 8 percent attrition rate for economically disadvantaged students and a I.I percent attrition rate for non-economically disadvantaged students (see top table on Page 40).

The attrition rate for economically disadvantaged students was about 29 times higher than that of non-economically disadvantaged students.

The overall statewide attrition rate reported by TEA declined from 23.I percent in 20II-I2 to 18.5 percent in 2016-17 with an annual decrease. During the 20II-I2 to 2016-17 school year, the attrition rate for economically disadvantaged students has shown greater fluctuations with a low of 3 I .8 percent in 2016-17 and a high of $35 \cdot \mathrm{I}$ percent in 2014-I5.

Economically Disadvantaged Annual Dropout Rates

The Grade 9-I2 annual dropout rate for economically disadvantaged students was 2.4 percent in 2016-17 compared to the statewide rate of I. 9 percent and compared to a I.3 percent rate for students who are not economically disadvantaged (see top table on Page 40).

Those students identified as economically disadvantaged dropped out at a rate 1.85 times higher the rate of students who are not economically disadvantaged. Of the reported 30,296 Grade 9-I2 dropouts for 2016-17, 68.7 percent were identified as economically disadvantaged compared to 3 I .3 percent of students who were not.

Economically Disadvantaged Graduation Rates

For the Class of 2017, 89.7 percent of students graduated on-time (see table on Page 4I). The four-year graduation rate of students who were not economically disadvantaged were higher (92.6 percent) than those of students identified as economically disadvantaged (86.9 percent). Conversely, the longitudinal dropout rate of economically disadvantaged students was higher (7.8 percent) than that of students who were not economically disadvantaged (3.8 percent).

Texas schools are more likely to lose students who are poor than students who are not. Underfunding of public schools overall and lack of adequate support for educating special populations is harming poor students, who are our largest group of students.

Economically Disadvantaged Student Enrollment by Race-Ethnicity in Texas Public Schools, 20II-I2 to 2017-18

Year	African American	Hispanic	White	Asian/Pacific Islander	American Indian	Multiracial	All Students
	Number						
2011-12	465,820	1,996,760	441,002	60,433	12,658	36,769	3,013,442
2012-13	473,675	2,034,063	437,598	62,021	12,376	39,161	3,058,894
2013-14	477,414	2,073,605	429,647	61,506	11,459	42,419	3,096,050
2014-15	472,327	2,062,173	419,497	63,148	12,145	44,010	3,073,300
2015-16	477,285	2,099,075	422,620	65,040	12,049	46,834	3,122,903
2016-17	481,352	2,124,915	424,417	67,003	11,962	49,678	3,159,327
2017-18	488,173	2,110,156	437,376	67,848	II,713	53,028	3,168,294
	Percent						
2011-12	15.5	66.3	14.6	2.0	0.4	1.2	100.0
2012-13	15.5	66.5	14.3	2.0	0.4	1. 3	100.0
2013-14	15.4	67.0	13.9	2.0	0.4	I. 4	100.0
2014-15	15.4	67.1	13.6	2.1	0.4	I. 4	100.0
2015-16	15.3	67.2	13.5	2.1	0.4	I. 5	100.0
2016-17	15.2	67.3	13.4	2.1	0.4	1. 6	100.0
2017-18	15.4	66.6	13.8	2.1	0.4	1.7	100.0

[^4]
Economically Disadvantaged Attrition Rate in Texas Public Schools, Grades 9-I2

Year	Grade 9 Base Year	Grade 12 End Year	Change	Attrition Rate (\%)
All Students				
2011-12	387,951	298,379	89,572	23.1
2012-13	392,040	305,237	86,803	22.1
2013-14	390,665	308,851	81,814	20.9
2014-15	393,553	313,810	79,743	20.3
2015-16	402,426	323,478	78,948	19.6
2016-17	408,202	332,767	75,435	18.5
Economically Disadvantaged Students				
2011-12	204,990	139,172	65,818	32.1
2012-13	217,170	144,798	72,372	33.3
2013-14	217,028	146,032	70,996	32.7
2014-15	222,848	144,673	78,175	35.1
2015-16	229,926	152,608	77,318	33.6
2016-17	231,494	157,931	73,563	3 I .8
Non-Economically Disadvantaged Students				
2011-12	182,961	159,207	23,754	13.0
2012-13	174,870	160,439	14,43I	8.3
2013-14	173,637	162,819	10,818	6.2
2014-15	170,705	169,137	1,559	0.9
2015-16	172,500	170,870	1,630	0.9
2016-17	176,708	174,836	1,872	I.I

Data source: Texas Education Agency, Standard Reports, Enrollment Reports, 2013-14 to 2017-18,
https://rptsvri.tea.texas.gov/adhocrpt/adste.html
Intercultural Development Research Association, 2018

Economically Disadvantaged Annual Dropout Rate in Texas Public Schools, Grades 9-I2

Year	Number of Students	Number of Dropouts	Annual Dropout Rate
2011-12	All Students		
$2012-407,697$	34,285	2.4	
$2013-14$	$1,428,819$	31,509	2.2
$2014-15$	$1,454,842$	31,384	2.2
$2015-16$	$1,49,294$	30,853	2.1
$2016-17$	$1,537,216$	30,683	2.0
	1,570,360	30,296	1.9
Economically Disadvantaged Students			
$2011-12-13$	745,010	20,929	2.8
$2013-14$	763,807	20,217	2.6
$2014-15$	783,079	20,592	2.6
$2015-16$	793,461	20,177	2.5
$2016-17$	828,322	20,512	2.5
	853,126	20,813	2.4

[^5] 2016-17

Intercultural Development Research Association, 2018

Examination of District Property Wealth and Attrition Rates

In 2012, IDRA presented testimony in the school finance trial that included data on the relationship of attrition rates to property wealth of school districts. This is an important discussion at a time when the population of economically disadvantaged students is growing and the state funding of public schools is decreasing.

To examine whether there was a possible relationship between property wealth per student and attrition rates, IDRA compiled data and tabulated variations in attrition and dropout rates among sub-groups of school districts grouped by property wealth per student.

The graph and table on Page 42 summarize the simple attrition rates calculated for sub-groups of districts sorted by property wealth per WADA (weighted average daily attendance) and then grouped by deciles, with each decile containing 102 districts.

Findings show that the lowest property wealth decile had an attrition rate of 25.I percent compared do a 17.7 percent attrition rate in the highest wealth sub-group.

But it was the seventh wealth decile that recorded the highest attrition rate (26.9%). This was followed by a sharp improvement in the 8th decile (18.6%). Seven of the 102 districts that comprise the 8 th decile have 57 percent of the high school enrollment. The attrition rates of these same seven districts range from I4 to Ig, with two of the districts having an attrition rate of I 4 . Meanwhile in the seventh decile, eight of the 102 districts comprised 57 percent of the high school enrollment, and had attrition rates ranging from i8 to 43. The results of the largest high school population districts greatly influenced the overall attrition rate for each decile.

The school district deciles with high attrition rates include large urban school districts (e.g., Austin, Dallas, Houston), suggesting that average property wealth districts could benefit from increased funding that would be generated by increasing compensatory and English learner funding weights.

Research indicates that compensatory education costs in Texas average about 40 percent of a school district's regular program costs as do ELL education costs. But since the adoption of the io percent add-on weights for bilingual and ESL programs and the 20 percent add-on weight for

> The lowest property wealth decile had an attrition rate of 25.1 percent compared do a 17.7 percent attrition rate in the highest wealth sub-group.

> Economically Disadvantaged Grades 9 Four-Year Longitudinal Graduation and Dropout Rates in Texas Public Schools

Year	Students	Graduates		Dropouts	
		Number	Percent Graduated	Number	Percent Dropped Out
		State			
Class of 2012	316,758	277,778	87.7	20,032	6.3
Class of 2013	328,584	289,298	88.0	21,634	6.6
Class of 2014	333,286	294,240	88.3	21,977	6.6
Class of 2015	339,626	302,262	89.0	21,357	6.3
Class of 2016	350,684	312,605	89.1	21,610	6.2
Class of 2017	360,606	323,373	89.7	21,171	$5 \cdot 9$
		Economically Disadvantaged Students			
Class of 2012	152,73I	129,965	85.1	11,968	7.8
Class of 2013	162,779	138,630	85.2	13,788	8.5
Class of 2014	167,545	142,669	85.2	15,069	9.0
Class of 2015	169,386	144,957	85.6	14,768	8.7
Class of 2016	178,148	153,120	86.0	15,085	8.5
Class of 2017	184,356	160,183	86.9	14,402	7.8

[^6]state compensatory education programs in 1984, no change in those original weights has been made. IDRA research also shows that most, if not all, school districts would benefit significantly from an increase in these funding weights.

Related research on dropout prevention also suggests that targeted efforts to reduce dropout rates can impact the issue at the local level, but implementation of dropout prevention and recovery efforts are recognized as affected by a school district's access to revenue to initiate and sustain such programs.

Concluding Remarks

While Texas ranks high among states in the graduation rates of economically disadvantaged students and outpaces the national average, the data show that Texas schools are more likely to lose students who are poor than students who are not. Underfunding of public schools overall and lack of adequate support for educating special populations is harming poor students, who are our largest group of students.

IDRA President \& CEO, Dr. María "Cuca" Robledo Montecel, counters the claim by many state and school leaders that certain schools are having a more difficult time because of the student population they serve: "The underlying message of 'We would do better if we had better kids' is that some kids - minority, poor, English learners - are, by their very being, difficult to teach. But children are not the problem... The characteristics of the children are absolutely not what leads schools to fail to graduate all students." (2017)

As IDRA's studies have shown, being poor or minority means you are more likely to be in an underfunded school with teachers who are not well prepared and you are more likely to be affected by policies and practices that don't work effectively to keep students in school through graduation (see Page 26).

Policymakers, educators and communities must continue to ensure that all students are provided equitable opportunity to quality education and life opportunity regardless of economic status. Attention must be paid to education funding, facilities, poverty and school demographics, staffing, school offerings, college preparatory courses, and a myriad of other factors impacting the education of our children.

Resources

Child Fund International. (November 4, 2013). The Effects of Poverty on Education in the United States, web page (Richmond, Va.: CFI).

Attrition Rates Vary by School Grouping

Data source: Texas Education Agency, Office of Academics, Division of Research and Analysis, Enrollment in Texas Public Schools, 2017-18

Intercultural Development Research Association, 2018

National Center for Education Statistics. (February 20, 2018). Digest of Education Statistics 2016: 52nd Edition, 20IO-II through 2015-I6 (Washington, D.C.: U.S. Department of Education).
National Center for Education Statistics. (June 2018). Public Elementary/Secondary School Universe Survey, 2000-OI, 2010-II, 2014-15, and 2015-16, Common Core of Data (CCD) (Washington, D.C.: U.S. Department of Education).
Robledo Montecel, M. (January 15, 2017). "Texas Does Not Have to Stay Stuck at Losing One in Four High Schoolers," Op-Ed, San Antonio Express-Newes.
Southern Education Foundation. (January 2015). A New Majority: Low Income Students Now a Majority In the Nation's Public Schools (Atlanta, Ga.: SEF).
Texas Education Agency. (2018). Enrollment in Texas Public

Schools, 2017-18, web page (Austin, Texas: TEA). Texas Education Agency. (2018). Secondary SchoolCompletion and Dropouts in Texas Public Schools, 20II-I2 to 2016-I7 (Austin, Texas: TEA).
U.S. Government Accounting Office. (October 2018). K-I2 Education: Public High Schools with More Students in Poverty and Smaller Schools Provide Fewer Academic Offerings to Prepare for College, report to the Ranking Member, Committee on Education and the Workforce, House of Representatives (Washington, D.C.: GAO).

Roy L. Johnson, M.S., is director of research, evaluation and support (roy.johnson@idra.org). Charles Cavazos, an IDRA education assistant, provided assistance with data analysis (charles.cavazos@idra.org).

Adjusted Cohort Graduation Rate for Economically Disadvantaged Students

State	2012-13		2013-14		2014-15		2015-16	
	Rate	Rank	Rate	Rank	Rate	Rank	Rate	Rank
United States	73.3		74.6		66.9		77.6	
Alabama	71.8	30	8 I .5	8	84.7	4	80.9	12
Alaska	59.5	48	59.6	51	66.6	46	68.4	44
Arizona	69.4	34	69.9	35	73.1	33	76.7	25
Arkansas	80.3	7	82.7	5	8 I .7	8	83.8	8
California	74.8	20	76.0	24	78.0	15	79.0	16
Colorado	63.7	46	64.2	45	65.5	49	67.8	47
Connecticut	72.1	28	75.9	26	75.9	25	76.7	25
Delaware	74.2	22	8 I .0	9	76.0	24	76.0	30
District of Columbia	58.9	49	60.1	50	68.2	41	69.3	42
Florida	67.0	38	67.8	37	70.4	39	74.4	35
Georgia	63.8	44	62.5	48	74.5	31	75.3	33
Hawaii	78.2	9	77.6	20	75.9	25	77.9	22
Idaho	-	-	71.3	32	72.0	34	71.9	39
Illinois	73.0	26	78.5	13	77.9	17	76.7	25
Indiana	82.7	3	85.4	I	84.2	5	85.0	6
Iowa	80.4	6	84.1	3	84.8	2	83.9	7
Kansas	76.6	I3	76.9	22	77.3	19	77.5	23
Kentucky	85.4	I	84.0	4	84.8	2	85.6	3
Louisiana	67.7	36	68.8	37	70.8	37	72.9	36
Maine	76.9	12	77.8	18	75.6	28	78.0	20
Maryland	75.8	17	77.8	18	78.6	13	79.2	15
Massachusetts	73.6	25	76.0	24	78.2	14	78.4	18
Michigan	63.9	43	65.6	42	67.5	43	67.1	48
Minnesota	63.8	44	65.9	41	67.2	44	68.2	45
Mississippi	70.2	32	70.9	34	70.5	38	78.8	17
Missouri	78.0	10	80.4	10	80.7	II	82.1	II
Montana	74.5	21	75.4	27	76.9	21	76.4	28
Nebraska	80.9	4	82.4	6	8 I .4	10	82.2	10
Nevada	64.0	42	63.6	47	63.7	50	66.7	51
New Hampshire	75.7	18	77.2	21	76.7	22	76.4	28
New Jersey	77.I	II	79.6	12	8 I .7	8	82.7	9
New Mexico	64.7	41	62.3	49	63.5	51	66.9	50
New York	67.5	37	68.8	37	71.0	35	72.8	37
North Carolina	76.1	16	78.0	15	79.6	12	80.6	13
North Dakota	72.0	29	72.0	31	71.0	35	71.0	40
Ohio	69.6	33	69.2	36	68.7	40	72.0	38
Oklahoma	79.7	8	78.2	14	77.5	18	75.9	31
Oregon	60.4	47	64.2	45	66.4	47	68.1	46
Pennsylvania	76.5	15	76.5	23	75.9	25	78.0	20
Rhode Island	69.3	35	71.1	33	75.6	28	74.8	34
South Carolina	70.5	31	72.5	30	73.7	32	87.7	I
South Dakota	67.0	38	65.0	43	67.0	45	67.0	49
Tennessee	80.7	5	82.2	7	83.5	6	85.5	3
Texas	85.2	2	85.2	2	85.6	1	86.0	2
Utah	72.9	27	73.5	29	76.7	22	75.6	32
Vermont	75.0	19	78.0	16	78.0	15	80.0	14
Virginia	74.0	23	75.I	28	75.4	30	78.1	19
Washington	65.0	40	66.8	40	68.1	42	70.2	41
West Virginia	73.7	24	80.1	II	82.9	7	85.5	3
Wisconsin	76.6	13	77.9	17	77.3	19	77.4	24
Wyoming	64.0	50	65.0	44	66.0	48	69.I	43

Data source: Common Core of Data, "Public Elementary/Secondary School Universe Survey," 2000-01, 2010-II, 2014-15, and 2015-16
Intercultural Development Research Association, 2018

Percentage of Public School Economically Disadvantaged Students

State	2012-13		2013-14		2014-15		2015-16	
	Rate	Rank	Rate	Rank	Rate	Rank	Rate	Rank
United States	51.3		52.0		$5_{1} .8$		52.1	
Alabama	58.0	I3	58.4	II	5 I .8	18	5.II	17
Alaska	40.4	41	43.0	35	43.1	35	42.7	36
Arizona	5 I .9	20	53.4	17	43.0	36	50.2	18
Arkansas	6 I .4	6	6 I .2	7	62.3	6	63.6	4
California	56.3	14	58.1	12	58.7	9	58.9	II
Colorado	41.6	36	42.0	37	4 T .6	37	41.8	37
Connecticut	36.6	49	37.I	48	37.7	45	37.9	45
Delaware	52.0	19	39.7	41	37.1	47	37.7	46
District of Columbia	6 t .6	5	99.2	I	92.4	I	76.4	I
Florida	58.6	II	58.4	10	58.4	10	58.8	14
Georgia	59.7	9	62.1	5	62.4	5	62.4	5
Hawaii	50.6	22	50.5	20	50.1	21	49.6	21
Idaho	48.2	26	47.4	27	48.5	24	46.9	28
Illinois	50.6	23	51.4	19	54.1	15	49.9	20
Indiana	49.0	25	49.2	24	49.2	23	48.3	25
Iowa	40.8	39	40.9	39	40.7	39	41.4	39
Kansas	49.6	24	50.1	22	49.9	22	49.2	24
Kentucky	55.4	15	54.8	14	56.9	12	59.4	9
Louisiana	66.2	3	66.8	4	63.6	3	61.3	7
Maine	45.0	32	45.8	30	47.I	25	46.0	31
Maryland	42.8	34	44.2	33	45.0	32	45.0	33
Massachusetts	37.0	47	38.3	45	39.9	41	39.9	41
Michigan	47.9	27	48.3	25	46.6	27	46.I	30
Minnesota	38.3	45	38.4	44	38.3	44	38.1	44
Mississippi	71.7	I	72.2	2	73.7	2	74.9	2
Missouri	45.5	30	49.7	23	51.3	19	50.1	19
Montana	42.2	35	42.1	36	43.6	34	46.2	29
Nebraska	44.1	33	44.9	31	44.3	33	44.2	35
Nevada	51.6	2 I	53.1	18	52.3	17	58.8	12
New Hampshire	26.9	51	27.8	51	29.0	51	28.3	51
New Jersey	36.8	48	38.0	46	36.8	49	37.6	47
New Mexico	68.2	2	67.2	3	62.6	4	71.7	3
New York	47.9	28	50.2	21	50.9	20	49.5	22
North Carolina	53.8	16	54.0	15	57.2	II	57.4	15
North Dakota	30.6	50	30.2	50	29.2	50	29.9	50
Ohio	40.7	40	44.6	32	45.I	31	44.9	34
Oklahoma	6 I .7	4	6 I .9	6	60.9	7	62.2	6
Oregon	53.7	17	53.5	16	52.9	16	5 I .4	16
Pennsylvania	4 4 .5	37	43.6	34	45.6	30	48.2	26
Rhode Island	46.2	29	46.8	28	46.8	26	47.0	27
South Carolina	58.1	12	57.4	13	55.9	14	60.0	8
South Dakota	39.7	42	39.6	42	39.5	42	41.7	38
Tennessee	58.6	10	58.8	9	55.9	I3	58.8	I3
Texas	60.3	8	60.1	8	58.8	8	58.9	10
Utah	60.5	7	37.0	49	36.9	48	36.4	49
Vermont	39.0	44	39.4	43	39.1	43	38.4	43
Virginia	39.5	43	39.7	40	40.2	40	4 I .2	40
Washington	45.2	31	46.3	29	46.0	29	45.4	32
West Virginia	52.5	18	47.9	26	46.1	28	49.4	23
Wisconsin	41.4	38	41.9	38	41.5	38	39.9	42
Wyoming	37.8	46	37.7	47	37.6	46	37.5	48

Data source: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "Public Elementary/Secondary School Universe Survey," 2000-or, 2010-II, 2014-15, and 2015-16.

TEA-Reported Texas School Completion and Dropout Data for 2016-17 - A Virtual Standstill

by Roy L. Johnson, M.S.

Grade 9-I2 annual and longitudinal dropout rates in Texas remained relatively unchanged according to the latest dropout and school completion report by the Texas Education Agency (TEA).

For the 2016-17 school year, TEA reported an annual dropout rate of I.9 percent (compared to 2.0 percent the previous year) and an attrition rate of I8.5 percent (ig. 6 percent last year).

TEA reported a longitudinal graduation rate of 89.7 percent (compared to 89. .I percent the previous year) and a longitudinal dropout rate of 5.9 percent (6.2 percent last year).

TEA released its latest dropout and school completion report in September 2018. The report entitled, Secondary School Completion and Dropouts in Texas Public Schools 2016-I7, presented information on dropouts, completers and graduates from Texas public schools.

In 2003, the 78 th Texas Legislature's passage of Senate Bill I86 mandated the use of the NCES definition in the computation of the dropout indicator beginning the 2005-06 school year. For the i2th consecutive year, TEA used the dropout definition and calculation methods mandated by the National Center for Education Statistics (NCES).

Annual Dropout Rate

TEA's report shows a I. 4 percent annual dropout rate for grades $7-12$, and a 2.0 percent annual dropout rate for grades 9-I2. These rates were one-tenth of a percentage point lower, respectively, than the previous year (2015-16). TEA reports that the number of school dropouts for grades 7-12 decreased from 33,466 in 2015-16 to 33,050 in 2016-17, a decrease of I .26 percent (see table on Page 47).

Of the 33,050 dropouts, 2,754 were in grades seven and eight, and 30,296 were in grades nine through I2. The attrition rate for the class of 2017 (grades 9-I2) was 18.5 percent - down from 19.6 percent for the class of 2016.

At the high school level (grades 9-I2), TEA reported that the number of school dropouts decreased from 30,683 in $2015-16$ to 30,296 in 2016-17, a decrease of I .26 percent (see table on Page 46).

Across race-ethnicity groups, the annual dropout rate was 2.8 percent for African American students, 2.3 percent for Hispanic students, and I.I percent for White students. The rates for White students remained unchanged, while the rates for African American students declined by two-tenths of a percentage point and for Hispanics by one-tenth of a percentage point.

At the middle school level (grades $7-8$), TEA reported that the number of school dropouts declined from 2,783 in 2015-16 to 2,754 in 201617, a decrease of I percent. The annual dropout rate for grades $7-8$ decreased from 0.4 percent in 2015-16 to 0.3 percent in 2016-17. Across raceethnicity groups, the annual dropout rate was 0.6 percent for African American students, 0.4 percent for Hispanic students and 0.2 percent for White students.

Longitudinal Dropout Rate

TEA reported a ninth grade longitudinal dropout rate of 5.9 percent for the class of 2017 as compared to 6.2 percent for the class of 2016. The reported longitudinal dropout rate for African American students (8.7 percent) was 2.72 times as high as the rate for White students (3.2 percent). Hispanic students had a 7.2 percent longitudinal
dropout rate which was 2.25 times higher than the rate for White students.

The four-year longitudinal dropout rate was 7.8 percent for economically disadvantaged students, 14.2 percent for English learners, and 9.6 percent for special education students.

Leaver Codes

For the 2016-17 school year, TEA tracked school leaver reasons in i7 areas (see the table on Page 49). For each student, school districts could report one of the 17 reasons as to why the student is not counted as a dropout, including graduation. Some categories of students who leave school are not counted as dropouts.

For the 2016-17 school year, a total of 447,351 students were reported as school leavers. Of this number, 334,424 (74.8 percent) were reported as graduates from Texas public schools and 56 (0.01 percent) were reported as graduates outside of the state.

According to TEA, another 7.7 percent of students were reported as dropouts, and 18.0 percent left school for other reasons. Besides graduating from school or dropping out, the top five exit reasons included: (I) left school to enroll in a school outside of Texas (34,609); (2) unknown reasons (31,896); (3) left for home schooling (22,516); (4) left to return to family's home country ($\mathrm{I} 3,375$); and (5) left to enroll in a private school in Texas (7,373).

It is important to note that most of the school leaver records only indicate a student's intention to enroll in another school. Records may not be verified.

Concluding Remarks

The review of 2016-17 annual and longitudinal dropout rates reported by TEA shows little change from the prior year. A virtual standstill exists in reported rates across racial and ethnic groups, and this applies to the persistent gap in the rates of whites and other racial and ethnic groups.

Resources

Texas Education Agency. Secondary School Completion and Dropouts in Texas Public Schools 2016-I7 (Austin, Texas: Texas Education Agency, September 2018).
Texas Education Agency. Secondary School Completion and Dropouts in Texas Public Schools, 2005-06, 2006-07, 2007-08, 2008-09, 2009-IO, 2010-II, 2011-I2, 2012-I3, 2013-14, 2014-15, 2015-16 and 2016-17 (Austin, Texas: Texas Education Agency).

Roy L. Johnson, M.S., is director of research, evaluation and support (roy.johnson@idra.org).

Texas Annual Dropout Rates - High School

Reported by the Texas Education Agency, 1997-98 to 2016-17

School Year	Dropouts	Students	Annual Dropout Rate (\%) By Group, Grades 9-12				
			African American	Hispanic	White	Other	Total
1997-98	24,414	1,124,991	2.9	3.1	I. 3	I. 4	2.2
1998-99	24,886	1,145,910	3.3	3.1	I. 2	I. 2	2.2
1999-00	21,439	1,163,883	2.6	2.7	I. 0	1.0	I. 8
2000-OI	16,003	1,180,252	I. 8	2.0	0.8	0.7	I. 4
2001-02	15,117	1,202,108	I. 8	I. 9	0.6	0.7	I. 3
2002-03	15,665	1,230,483	I. 7	I. 9	0.6	0.6	I. 3
2003-04	15,160	1,252,016	I. 4	I. 9	0.6	0.6	I. 2
2004-05	17,056	1,273,950	I. 7	2.0	0.7	0.6	I. 3
2005-06*	48,803	1,317,993	5.4	5.2	I. 8	1. 5	3.7
2006-07*	52,418	1,333,837	5.8	5.4	I. 9	1.5	3.9
2007-08*	43,808	1,350,921	5.0	4.4	I. 5	I. 2	3.2
2008-09*	38,720	1,356,249	4.4	3.8	I. 3	I.I	2.9
2009-10*	33,235	1,377,330	3.9	3.1	I.I	I. 2	2.4
2010-11*	32,833	1,394,523	3.6	3.0	I.I	I.I	2.4
2011-12*	34,285	1,407,697	3.8	3.1	I. 2	1. 3	2.4
2012-13*	31,509	1,428,819	$3 \cdot 3$	2.8	I.I	I. 2	2.2
2013-14*	31,384	1,454,842	3.I	2.7	I.I	I.I	2.2
2014-15*	30,853	1,495,294	3.0	2.5	I.I	I. 2	2.1
2012-13*	31,509	1,428,819	3.3	2.8	I.I	I. 2	2.2
2013-14*	31,384	1,454,842	3.1	2.7	I.I	I.I	2.2
2014-15*	30,853	1,495,294	3.0	2.5	I.I	I. 2	2.1
2015-16*	30,683	1,537,216	3.0	2.4	I.I	I.I	2.0
2016-17*	30,296	1,570,360	2.8	2.3	I.I	0.9	I. 9

*The 2005-06, 2006-07, 2007-08, 2008-09, 2009-10, 2010-II 2011-12, 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17 dropout rate was calculated using the National Center for Education Statistics dropout definition. Using the NCES definition, a dropout is defined as "a student who is enrolled in public school in grades $7-12$, does not return to public school the following fall, is not expelled, and does not graduate, receive a General Education Development (GED) certificate, continue school outside the public school system, begin college, or die." In order to implement the legislative requirements for the computation of dropout rates, TEA had to make changes in some dates affecting dropout status and some changes in groups of students who had not been considered dropouts previously.
Source: Texas Education Agency, Secondary School Completion and Dropouts in Texas Public Schools 2016-17, September 2018
Intercultural Development Research Association, 2018

Texas Annual Dropout Rates - Middle and High School

Reported by the Texas Education Agency, 1987-88 to 2016-17

School Year	Dropouts	Students	Annual Dropout Rate (\%) By Group, Grades 7-12				
			African American	Hispanic	White	Other	Total
1987-88	91,307	1,363,198	8.4	8.8	5.I	6.1	6.7
1988-89	82,325	1,360,115	7.5	8.I	4.5	4.9	6.1
1989-90	70,040	1,361,494	6.7	7.2	3.5	4.3	5.I
1990-91	53,965	1,372,738	4.8	5.6	2.7	3.1	3.9
1991-92	53,420	1,406,838	4.8	5.5	2.5	2.9	3.8
1992-93	43,402	1,533,197	3.6	4.2	I. 7	2.0	2.8
1993-94	40,2II	1,576,015	3.2	3.9	I. 5	1.7	2.6
1994-95	29,918	1,617,522	2.3	2.7	I. 2	I.I	I. 8
1995-96	29,207	1,662,578	2.3	2.5	I.I	I.I	I. 8
1996-97	26,901	1,705,972	2.0	2.3	I. 0	0.9	I. 6
1997-98	27,550	1,743,139	2.1	2.3	0.9	I.I	I. 6
1998-99	27,592	1,773,117	2.3	2.3	0.8	0.9	I. 6
1999-00	23,457	1,794,521	I. 8	I. 9	0.7	0.7	I. 3
2000-01	17,563	1,818,940	I. 3	I. 4	0.5	0.5	I. 0
2001-02	16,622	1,849,680	I. 3	I. 3	0.4	0.5	0.9
2002-03	17,151	I,891,36ı	I. 2	I. 4	0.4	0.4	0.9
2003-04	16,434	1,924,717	I. 0	I. 3	0.4	0.4	0.9
2004-05	18,290	1,954,752	I. 2	I. 4	0.5	0.4	0.9
2005-06*	51,841	2,016,470	3.8	3.5	I. 3	I.I	2.6
2006-07*	55,306	2,023,570	4.I	3.7	I. 3	I.I	2.7
2007-08*	45,796	2,042,203	3.5	3.0	I.I	0.9	2.2
2008-09*	40,923	2,060,701	3.1	2.6	0.9	0.8	2.0
2009-10*	34,907	2,091,390	2.7	2.1	0.8	0.8	I. 7
2010-II*	34,363	2,122,414	2.5	2.1	0.8	0.8	I. 6
2011-12*	36,276	2,150,364	2.6	2.1	0.8	0.9	I. 7
2012-13*	34,696	2,189,442	2.3	2.0	0.8	0.8	I. 6
2013-14*	35,358	2,238,400	2.2	2.0	0.8	0.8	I. 6
2014-15*	33,437	2,284,109	2.2	I. 8	0.8	0.7	I. 5
2015-16*	33,466	2,330,946	2.1	I. 7	0.8	0.8	I. 4
2016-17*	33,050	2,376,528	2.I	I. 7	0.8	0.7	I. 4

*The 2005-06, 2006-07, 2007-08, 2008-09, 2009-IO, 2010-II, 20II-I2, 2012-13, 2013-14, 2014-15, 2015-16 and 2017-18 dropout rate was calculated using the National Center for Education Statistics dropout definition. Using the NCES definition, a dropout is defined as "a student who is enrolled in public school in grades $7-12$, does not return to public school the following fall, is not expelled, and does not graduate, received a General Education Development (GED) certificate, continue school outside the public school system, begin college, or die." In order to implement the legislative requirements for the computation of dropout rates, TEA had to make changes in some dates affecting dropout status and some changes in groups of students who had not been considered dropouts previously.
Data sources: Texas Education Agency, Report on Public School Dropouts, 1996-97 and 1997-98. Texas Education Agency, Secondary School Completion and Dropouts in Texas Public Schools 2016-17, September 2018.
Intercultural Development Research Association, 2018

Texas Longitudinal Dropout Rates - High School

Reported by the Texas Education Agency, 1997-98 to 2016-17

School Year	Dropouts	Students	Longitudinal Dropout Rate (\%) By Group, Grades 9-12				
			African American	Hispanic	White	Other	Total
1997-98	20,226	228,049	пı. 6	13.4	5.5	4.7	8.9
1998-99	20,231	238,280	п. 6	13.1	4.9	4.4	8.5
1999-00	17,729	244,777	9.9	II. 2	4.0	3.8	7.2
2000-01	15,551	249,16I	8.4	9.6	3.5	3.5	6.2
2001-02	12,719	254,040	6.6	7.8	2.7	2.7	5.0
2002-03	11,869	263,571	6.3	7.1	2.2	2.1	4.5
2003-04	10,507	270,911	4.9	6.3	I. 9	1.9	3.9
2004-05	II,650	271,218	5.5	6.9	2.0	2.1	4.3
2005-06*	24,975	283,698	13.3	13.1	$3 \cdot 9$	3.4	8.8
2006-07*	33,005	290,662	17.2	16.4	$5 \cdot 3$	n/a	II. 4
2007-08*	31,437	300,488	16.I	14.4	5.I	n/a	10.5
2008-09*	28,856	308,427	14.8	12.4	4.5	n/a	9.4
2009-10*	22,988	314,079	II. 8	9.6	3.5	n/a	7.3
2010-II*	21,813	319,588	10.9	8.7	3.4	2.3	6.8
201I-12*	20,032	316,758	10.1	8.0	3.2	3.0	6.3
2012-13*	21,634	328,584	9.9	8.2	3.5	3.4	6.6
2013-14*	21,977	333,286	9.8	8.2	3.6	3.2	6.6
2014-15*	21,357	339,626	9.5	7.7	3.4	3.4	6.3
2012-13*	21,610	350,684	9.I	7.5	3.4	3.2	6.2
2013-14*	21,171	360,606	8.7	7.2	3.2	2.8	$5 \cdot 9$
2014-15*	30,853	1,495,294	3.0	2.5	I.I	1.2	2.1
2015-16*	30,683	1,537,216	3.0	2.4	I.I	I.I	2.0
2016-17*	30,296	1,570,360	2.8	2.3	I.I	0.9	I. 9

*The 2005-06, 2006-07, 2007-08, 2008-09, 2009-IO, 2010-II 20II-I2, 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17 dropout rate was calculated using the National Center for Education Statistics dropout definition. Using the NCES definition, a dropout is defined as "a student who is enrolled in public school in grades $7-12$, does not return to public school the following fall, is not expelled, and does not graduate, receive a General Education Development (GED) certificate, continue school outside the public school system, begin college, or die." In order to implement the legislative requirements for the computation of dropout rates, TEA had to make changes in some dates affecting dropout status and some changes in groups of students who had not been considered dropouts previously.
Data source: Texas Education Agency, Secondary School Completion and Dropouts in Texas Public Schools 2016-17, September 2018.
Intercultural Development Research Association, 2018

Exit Reasons for School Leavers, 7-I2, 2007-08 to 2016-17 Reported by the Texas Education Agency

Leaver Reasons (Code)	2008-09	2009-10	2010-II	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17
Graduated or received an out-of-state GED Graduated from a campus in this district or charter (OI)	264,275	280,520	290,581	292,636	301,418	303,109	313,397	324,3II	334,424
Graduated outside Texas before entering Texas public school, entered a Texas public school, and left again (85)	42	76	--	46	97	61	51	59	56
Completed GED outside Texas (86)	104	107	61	61	98	54	40	46	41
Graduated from another state under provisions of the Interstate Compact on Educational Opportunity for Minority Children (90)	n/a	n/a	n/a	18	22	29	28	14	15

Moved to other educational setting
Withdrew from/left school to enter college and is working toward an associate's or bachelor's degree (24) $\quad 763$
$\begin{array}{llllllllll}\text { Withdrew from/left school for home schooling (60) } & 20,948 & 20,214 & 20,876 & 20,629 & 21,375 & 21,812 & 21,120 & 21,456 & 22,516\end{array}$ Removed by CPS and the district has not been informed of the student's current status or

| enrollment (66) | 194 | 232 | 702 | 232 | 239 | 312 | 164 | 171 | 174 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Withdrew from/left school to enroll in a private school in Texas (8I)

12,516	I2,307	I2,079	II,553	IO,767	9,938	8,809	7,412	7,373

Withdrew from/left school to enroll in a public or private school outside Texas (82)

$$
\begin{array}{lllllllll}
37,718 & 37,642 & 36,356 & 37,323 & 34,857 & 35,347 & 35,283 & 34,763 & 34,609
\end{array}
$$

Withdrew from/left school to enroll in the Texas
Tech University ISD High School Diploma
Program or the University of Texas at Austin

| High School Diploma Program (87) | 214 | 252 | 262 | 269 | 273 | 271 | 252 | 207 | 194 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Withdrawn by district
Expelled under the provisions of the Texas Education
$\begin{array}{lllllllllllllllllllll}\text { Code } \$ 37.007 \text { and cannot return to school }(78) & 526 & 637 & 253 & 242 & 153 & \text { I34 } & \text { I16 } & & \text { I32 } & \text { IO2 }\end{array}$
Withdrawn by district when the district discovered that the student was not a resident at the time of enrollment, had falsified enrollment information, or had not provided proof of identification of immunization records (83)

I,I6I	719	505	408	355	321	397	333	456

Other reasons

Died while enrolled in school or during the summer break after completing the prior school year (03)

6II	603	546	579	565	565	636	542	679
15,319	I4,446	I3,816	I3,089	I2,059	I2,576	12,631	I2,936	13,375

Withdrew from/left school to return to family's home country (16)

Student was ordered by a court to attend a GED
$\begin{array}{lllllllll}\mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & 2,506 & 2,063 & \mathrm{I}, 857 & \mathrm{I}, 7 \mathrm{I} 6 & \mathrm{I}, 44 \mathrm{I} & 509 & 757\end{array}$
Student was incarcerated in a state jail or federal penitentiary as an adult or as a person certified to stand trial as an adult (89)

Other (reason unknown or not listed above) (98)

n / a	n / a	516	533	380	406	458	497	417
40,972	34,949	$3 \mathrm{I}, 367$	$33,72 \mathrm{I}$	32,499	33,269	$3 \mathrm{I}, 565$	32,476	$3 \mathrm{I}, 896$
$\mathbf{3 9 5 , 3 6 3}$	$\mathbf{4 0 3 , 3 5 5}$	$\mathbf{4 1 , 1 4 0}$	$\mathbf{4 1 3 , 8 0 1}$	$\mathbf{4 1 7 , 3 9 4}$	$\mathbf{4 2 0 , 2 3 8}$	$\mathbf{4 2 6 , 7 0 7}$	$\mathbf{4 3 6 , 1 6 7}$	$\mathbf{4 4 7 , 3 5 1}$

All leaver reasons

Texas Ranks Fifth Nationally in On-Time Graduation Rate

by Roy L. Johnson, M.S.

Texas ranks fifth out of 50 states and the District of Columbia on the federal measure of on-time graduation from public high schools - the adjusted cohort graduation rate (ACGR). In the 2015-16 school year, the most recent national data available for on-time graduation rates, Texas had an adjusted cohort graduation rate of 89.1 percent compared to the national average of 84 .I percent.

Considered the most accurate measure of on-time graduation, the ACGR measures the percentage of public high school students who graduate with regular high school diploma four years after starting ninth grade plus the number of students who transfer into the cohort minus those who transfer out.

For the most recent data available on on-time graduation, the ACGR in Texas trailed only four states - Iowa was first at 9r. 3 percent, New Jersey was second at 90. . percent, West Virginia was third at 89.8 percent, and Nebraska was fourth at 89.3 percent.

The National Center for Education Statistics (NCES) in the U.S. Department of Education, Institute of Education Sciences, released the 2015-16 adjusted cohort graduation rates (ACGR) in February 2018. According to NCES, the ACGR is more accurate than the averaged freshman graduation rate (AFGR). The ACGR takes into consideration the number of students of students who transfer in and out of the cohort, thus defining the term "adjusted cohort" for this latest measure of high school graduation.

Beginning with the $201 \mathrm{I}-\mathrm{I} 2$ school year, this measure became a required component of each state's Consolidated State Performance Report
(CSPR). Data for this measure were drawn from counts of enrollment by grade and graduates in the Common Core of Data (CCD) State NonFiscal Survey of Public Elementary/Secondary Education. In order to calculate the rate, aggregate student enrollment data are used to estimate the size of the incoming freshman class and aggregate counts of the number of diplomas awarded four years later.

Methods

The 50 states and the District of Columbia reported counts of high school graduates in 2015-16 (see table on next page for rates by state and rank orders by state for the last four years).

The adjusted cohort rate is calculated by dividing the number of cohort members who earn a regular high school diploma by the end of the school year by the number of first-time ninth grade students in the fall of their freshman year plus students who transferred in, minus students who transferred out, emigrated or died during the four-year school enrollment period. The result of the calculation is expressed as a percent.

Major Findings

Major findings of the latest NCES study on the adjusted cohort graduation rate include the following (also see the tables on Pages 52-54).

- In the 2015-16 school year, about four out of five students in the United States graduated from high school on time - within four years of after starting high school as a freshman in ninth grade and adjusting for cohort transfers and removals.
- The adjusted cohort graduation rate in the United States was 84.I percent in 2015-16

The adjusted cohort graduation rate in the United States was 84.I percent in 2015-16 and ranged from a low of 69.2 percent in the District of Columbia to a high of 9I.3 percent in Iowa.
and ranged from a low of 69.2 percent in the District of Columbia to a high of 91.3 percent in Iowa.

- Twenty-seven of the reporting entities had rates equal to or higher than the national average of 84.I percent - Alabama, Arkansas, Connecticut, Delaware, Illinois, Indiana, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Missouri, Montana, Nebraska, New Hampshire, New Jersey, North Carolina, North Dakota, Pennsylvania, Tennessee, Texas, Utah, Vermont, Virginia, West Virginia, and Wisconsin. In 2015-16, Texas ranked fifth among the 50 reporting states and the District of Columbia with a rate of 89.I percent.
The Texas ACGR increased slightly from 2012-I3 (88.0 percent) to 2015-I6 (89.I percent).
- Twenty-three of the 50 reporting states and the District of Columbia had rates lower than the overall average of 84.I percent - Alaska, Arizona, California, Colorado, District of Columbia, Florida, Georgia, Hawaii, Idaho, Louisiana, Michigan, Minnesota, Mississippi, Nevada, New Mexico, New York, Ohio, Oklahoma, Oregon, Rhode Island, South Carolina, South Dakota, Washington, and Wyoming.
- In the United States in 2015-16, American Indian/Alaska Native, Black and Hispanic students had an adjusted cohort graduation rate below the national average of 84 .I percent. American Indian/Alaska Native had a national average ACGR of 7 I .9 percent, Black students had a national ACGR of 76.4 percent, and Hispanic students had a national ACGR of 79.3 percent. White students had a national ACGR of 88.3 percent while Asian/Pacific Islander students had a national ACGR of 90.8 percent.
The state of Texas ranked high in the graduation rates of students from all race-ethnicity groups as the graduation rates exceeded the respective student group averages. Texas ranked second in the graduation rates of White students (93.4 percent), Black students (85.4 percent), and Asian/Pacific Islander students (95.4 percent). Texas ranked fourth in the graduation rate of Hispanic students with an ACGR of 86.9 percent and ranked fifth for American Indian/Alaskan Native students with an ACGR of 87.0 percent.
- For special population groups for the nation as a whole, economically disadvantaged students had an ACGR of 77.6 percent, limited English
proficient students (English learners) had an ACGR of 66.9 percent, and students with disabilities had an ACGR of 65.5 percent. Each of these groups had a rate below the national average.
The state of Texas ranked high in the graduation rates of students in special population groups. Texas ranked second in the nation in the graduation rate of economically disadvantaged students with an ACGR of 86.0 percent. The state of Texas ranked fourth in the graduation rate of students with disabilities with a rate of 77.9 percent. For the special population group of limited English proficient students, Texas ranked ioth with an ACGR of 73.7 percent.
With the convening of the nation's governors in the 1989 Education Summit at the University of Virginia, the nation has sought to obtain an education goal of having a graduation rate of at least 90 percent. Though this goal has not been realized, ACGR data shows that the nation is inching closer and is likely to achieve the target in the next five to io years.

Two states, Iowa and New Jersey, have reached the 90 percent goal with ACGRs of 9 I. 3 percent and 90.1 percent, respectively. Four states (West Virginia, Nebraska, Texas, Missouri) are also inching closer to the 90 percent goal with reported graduation rates.

Despite the continuing improvement and the possibility that more states will soon reach the 90 percent graduation rate goal, it is still evident that there are continuing areas of concern. Gaps persist in the graduation rates between Whites and racial and ethnic group students. In the nation and in Texas, students of color and those in special populations have on-time graduation rates below the national average.

Among states, there is a large gap between those at the top of ACGR rankings and those at the bottom. The nation's applause for the continued improvement in graduation rates is tempered by persistent gaps between student groups and the minimal progress achieved in some states.

National and local efforts must continue in addressing questions about which students are removed from the cohort as school leavers, which students who drop out are considered school dropouts, what constitutes a regular high school diploma, what verification steps are being undertaken in defining school dropouts and completers, and other germane questions.

Resources

U.S. Department of Education. (2016). Consolidated State Performance Report, 2010-II through 2013-14 (Washington, D.C.: Institute of Education Sciences, National Center for Education Statistics).
U.S. Department of Education. (September 15, 2016). EDFacts. (Washington, D.C.: Institute of Education Sciences, National Center for Education Statistics).
U.S. Department of Education. (February 20, 2018). Digest of Education Statistics 2016: 52nd Edition, 2010-II through 2015-16 (Washington, D.C.: Institute of Education Sciences, National Center for Education Statistics).
U.S. Department of Education. (February 2015). Public High School Four-Year On-Time Graduation Rates: School Year 2012-I3 (Washington, D.C.: Institute of Education Sciences, National Center for Education Statistics).
U.S. Department of Education. (April 2014). Public High School Four-Year On-Time Graduation Rates and Event Dropout Rates: School Years 20IO-II and 20II-I2, First Look (Washington, D.C.: Institute of Education Sciences, National Center for Education Statistics).

Roy L. Johnson, M.S., is the IDRA Director of Evaluation (roy.johnson@idra.org).

Adjusted Cohort Graduation Rate (ACGR) by State

State	2011-12		2012-13		2013-14		2014-15		2015-16	
	Rate	Rank	Rate	Rank	Rate	Rate	Rate	Rank	Rate	Rank
United States	80		81.4		82.3		83.2		84.I	
Alabama	75	37	80.0	32	86.3	18	89.3	3	87.I	16
Alaska	70	43	71.8	45	7 I .1	48	75.6	46	76.1	47
Arizona	76	35	75.I	43	75.7	43	77.4	44	79.5	43
Arkansas	84	15	84.9	19	86.9	15	84.9	25	87.0	17
California	79	28	80.4	30	81.0	33	82.0	3 I	83.0	30
Colorado	75	37	76.9	38	77.3	41	77.3	45	78.9	45
Connecticut	85	II	85.5	15	87.0	13	87.2	14	87.4	15
Delaware	80	25	80.4	30	87.0	13	85.6	22	85.5	25
District of Columbia	59	48	62.3	50	6 I .4	51	68.5	51	69.2	5 I
Florida	75	37	75.6	4 I	76.1	43	77.9	42	80.7	37
Georgia	70	43	71.7	46	72.5	46	78.8	40	79.4	44
Hawaii	8I	23	82.4	27	81. 8	30	8 I .6	33	82.7	32
Idaho	---	NR	---	NR	77.3	4 I	78.9	39	79.7	40
Illinois	82	22	83.2	23	86.0	20	85.6	22	85.5	25
Indiana	86	8	87.0	8	87.9	7	87.1	15	86.8	19
Iowa	89	I	89.7	I	90.5	I	90.8	I	91.3	I
Kansas	85	II	85.7	I3	85.7	21	85.7	20	85.7	23
Kentucky	---	NR	86.1	12	87.5	9	88.0	8	88.6	7
Louisiana	72	42	73.5	44	74.6	45	77.5	43	78.6	46
Maine	85	II	86.4	10	86.5	16	87.5	12	87.0	17
Maryland	84	15	85.0	17	86.4	17	87.0	16	87.6	12
Massachusetts	85	II	85.0	17	86.1	19	87.3	13	87.5	13
Michigan	76	35	77.0	36	78.6	36	79.8	36	79.7	40
Minnesota	78	31	79.8	33	8 I .2	32	81.9	32	82.2	35
Mississippi	75	37	75.5	42	77.6	40	75.4	47	82.3	34
Missouri	84	15	85.7	13	87.3	10	87.8	10	89.0	6
Montana	84	15	84.4	22	85.4	22	86.0	19	85.6	24
Nebraska	88	2	88.5	2	89.7	2	88.9	5	89.3	4
Nevada	63	47	70.7	47	70.0	49	71.3	49	73.6	49
New Hampshire	86	8	87.3	7	88.1	6	88.1	7	88.2	9
New Jersey	86	8	87.5	5	88.6	3	89.7	2	90.1	2
New Mexico	70	43	70.3	48	68.5	50	68.6	50	71.0	50
New York	77	32	76.8	39	77.8	39	79.2	38	80.4	38
North Carolina	80	25	82.5	26	83.9	26	85.6	22	85.9	22
North Dakota	87	6	87.5	5	87.2	II	86.6	17	87.5	I3
Ohio	8I	23	82.2	28	81. 8	30	80.7	34	83.5	29
Oklahoma	---	NR	84.8	20	82.7	28	82.5	30	8 I .6	36
Oregon	68	46	68.7	49	72.0	47	73.8	48	74.8	48
Pennsylvania	84	15	85.5	15	85.3	23	84.8	26	86.1	2 I
Rhode Island	77	32	79.7	34	80.8	34	83.2	29	82.8	31
South Carolina	75	37	77.6	35	80.1	35	80.3	35	82.6	33
South Dakota	83	20	82.7	25	82.7	28	83.9	28	83.9	28
Tennessee	87	6	86.3	II	87.2	II	87.9	9	88.5	8
Texas	88	2	88.0	3	88.3	5	89.0	4	89.1	5
Utah	80	25	83.0	24	83.9	26	84.8	26	85.2	27
Vermont	88	2	86.6	9	87.8	8	87.7	II	87.7	II
Virginia	83	20	84.5	2 I	85.3	23	85.7	20	86.7	20
Washington	77	32	76.4	40	78.2	38	78.2	4I	79.7	40
West Virginia	79	28	8 I .4	29	84.5	25	86.5	18	89.8	3
Wisconsin	88	2	88.0	3	88.6	3	88.4	6	88.2	9
Wyoming	79	28	77.0	36	78.6	36	70.3	37	80.0	39

[^7]Data sources: U.S. Department of Education. (2016). Consolidated State Performance Report, 2010-II through 2013-I4. U.S. Department of Education. (September I5, 2016). EDFacts, 2010-II through 2014-15. U.S. Department of Education. (February 20, 2018). Digest of Education Statistics 2016: 52nd Edition, 2010-II through $2015-16$.

Intercultural Development Research Association, 2018

Adjusted Cohort Graduation Rate (ACGR) by State and Race-Ethnicity

State	Total		American Indian/ Alaskan Native		Asian/Pacific Islander		Hispanic		Black		White	
	Rate	Rank	Rate	Rank	Rate	Rate	Rate	Rank	Rate	Rank	Rate	Rank
United States	84.I		71.9		90.8		79.3		76.4		88.3	
Alabama	87.1	16	90.0	2	91.0	22	87.0	3	84.5	3	88.6	24
Alaska	76.1	47	64.0	39	81.0	46	76.0	30	74.0	33	80.8	48
Arizona	79.5	43	67.7	34	89.0	27	76.4	28	75.5	31	84.0	39
Arkansas	87.0	17	87.0	5	87.0	33	85.7	5	8 I .5	9	89.2	21
California	83.0	30	74.0	24	92.9	14	80.0	18	73.0	38	88.0	30
Colorado	78.9	45	62.0	42	85.0	41	69.9	46	71.8	40	84.4	37
Connecticut	87.4	15	89.0	3	94.0	5	76.4	28	78.8	21	92.5	6
Delaware	85.5	25	> $=90$	I	91.0	22	81.0	16	82.1	7	88.4	26
District of Columbia	69.2	51	\ddagger	NR	77.0	51	69.0	49	67.7	44	9 m .0	II
Florida	80.7	37	77.0	22	91.6	20	79.5	22	72.3	39	85.I	36
Georgia	79.4	44	69.0	32	87.8	32	73.4	37	76.2	30	83.1	43
Hawaii	82.7	32	72.0	28	83.6	43	75.0	33	78.0	22	82.0	45
Idaho	79.7	40	58.0	43	80.0	49	73.7	36	78.0	22	8 I .4	47
Illinois	85.5	25	79.0	19	93.5	8	8 I .3	15	74.5	31	90.4	15
Indiana	86.8	19	83.0	II	89.0	27	82.7	II	73.8	35	89.5	18
Iowa	91.3	I	8 r .0	18	91.0	22	85.0	6	80.0	16	92.9	3
Kansas	85.7	23	73.0	28	92.0	16	79.2	23	77.0	26	88.4	26
Kentucky	88.6	7	83.0	II	93.0	II	82.0	12	80.9	14	90.0	16
Louisiana	78.6	46	83.0	II	89.0	27	73.0	38	73.4	36	83.2	41
Maine	87.0	17	85.0	9	94.0	5	85.0	6	77.0	26	87.5	33
Maryland	87.6	12	82.0	15	95.I	3	76.5	27	84.1	4	92.4	7
Massachusetts	87.5	13	85.0	9	92.7	15	72.7	43	78.9	19	91.9	8
Michigan	79.7	40	67.0	35	89.8	26	72.6	44	67.4	45	83.4	40
Minnesota	82.2	35	53.0	45	83.6	43	65.3	51	65.1	48	87.0	34
Mississippi	82.3	34	88.0	4	92.0	16	82.0	12	78.9	19	85.9	35
Missouri	89.0	6	86.0	7	92.0	16	83.1	10	79.0	17	91.6	9
Montana	85.6	24	66.0	36	93.0	II	80.0	18	81.0	II	88.7	23
Nebraska	89.3	4	74.0	24	8 t .0	46	8. 8	14	79.0	17	92.6	5
Nevada	73.6	49	65.0	38	86.0	38	69.7	47	56.5	51	79.9	49
New Hampshire	88.2	9	74.0	24	92.0	16	76.0	30	78.0	22	89.2	21
New Jersey	90.1	2	83.0	II	96.7	1	83.3	9	82.1	7	94.2	I
New Mexico	71.0	50	63.0	40	81.0	46	70.7	45	6 \%.0	50	75.7	51
New York	80.4	38	68.0	33	86.7	36	68.1	50	68.5	43	89.3	19
North Carolina	85.9	22	82.0	15	93.4	9	80.1	17	82.9	5	88.6	24
North Dakota	87.5	13	66.0	36	88.0	31	77.0	26	77.0	26	90.8	12
Ohio	83.5	29	70.0	31	87.0	33	72.8	40	67.3	46	87.7	32
Oklahoma	8 8 .6	36	81.4	17	86.0	38	77.8	25	77.1	25	83.2	41
Oregon	74.8	48	56.0	44	86.0	38	69.4	48	66.0	47	76.6	50
Pennsylvania	86.I	21	77.0	22	91.2	21	72.8	40	73.2	37	90.5	14
Rhode Island	82.8	31	78.0	20	91.0	22	79.0	24	8 r .0	II	88.4	26
South Carolina	82.6	33	74.0	24	94.0	5	79.9	20	80.3	15	84.I	38
South Dakota	83.9	28	51.0	47	79.0	50	73.0	38	77.0	26	89.3	19
Tennessee	88.5	8	86.0	7	93.0	II	83.7	8	82.3	6	9 I .3	10
Texas	89.1	5	87.0	5	95.4	2	86.9	4	85.4	2	93.4	2
Utah	85.2	27	71.0	30	87.0	33	75.I	32	74.0	33	87.9	31
Vermont	87.7	II	+	NR	83.0	45	89.0	I	71.0	42	88.4	26
Virginia	86.7	20	---	NR	93.I	10	74.8	34	8 I .3	10	90.7	13
Washington	79.7	40	63.0	40	86.6	37	72.8	40	71.3	41	82.2	44
West Virginia	89.8	3	\ddagger	NR	> $=95$	4	89.0	I	88.0	I	89.9	17
Wisconsin	88.2	9	78.0	20	89.0	27	79.9	20	64.2	49	92.7	4
Wyoming	80.0	39	53.0	45	84.0	42	74.0	35	8 t .0	II	82.0	45

\ddagger Reporting standards not met (too few cases) $\quad>=$ Data blurred to protect student privacy $\quad--$ Not available NR - Not Ranked
Data source: U.S. Department of Education. (February 20, 2018). Digest of Education Statistics 2016: 52nd Edition, 2010-II through 2015-16.
Intercultural Development Research Association, 2018

Adjusted Cohort Graduation Rate (ACGR), by Special Population Group

State	Total		Economically Disadvantaged		Limited English Proficiency		Students with Disabilities	
	Rate	Rank	Rate	Rank	Rate	Rank	Rate	Rank
United States	84.I		77.6		66.9		65.5	
Alabama	87.I	16	80.9	12	64.0	30	54.1	43
Alaska	76.1	47	68.4	44	55.0	42	54.0	44
Arizona	79.5	43	76.7	25	32.0	51	69.0	22
Arkansas	87.0	17	83.8	8	86.0	2	84.3	I
California	83.0	30	79.0	16	72.0	14	66.0	28
Colorado	78.9	45	67.8	47	61.4	35	57.2	39
Connecticut	87.4	15	76.7	25	67.0	25	65.2	29
Delaware	85.5	25	76.0	30	73.0	II	67.0	26
District of Columbia	69.2	51	69.3	42	64.0	30	50.0	48
Florida	80.7	37	74.4	35	62.0	34	61.6	32
Georgia	79.4	44	75.3	33	56.5	41	56.6	40
Hawaii	82.7	32	77.9	22	69.0	19	59.0	36
Idaho	79.7	40	71.9	39	73.0	12	60.0	34
Illinois	85.5	25	76.7	25	71.9	16	70.5	17
Indiana	86.8	19	85.0	6	71.0	17	72.0	II
Iowa	91.3	I	83.9	7	8 I .0	3	70.0	19
Kansas	85.7	23	77.5	23	77.4	5	77.5	5
Kentucky	88.6	7	85.6	3	68.0	21	71.9	14
Louisiana	78.6	46	72.9	36	43.0	48	46.6	49
Maine	87.0	17	78.0	20	78.0	4	72.0	II
Maryland	87.6	12	79.2	15	48.0	46	66.9	27
Massachusetts	87.5	13	78.4	18	64.1	29	71.8	15
Michigan	79.7	40	67.1	48	72.1	13	55.4	42
Minnesota	82.2	35	68.2	45	63.2	32	60.8	33
Mississippi	82.3	34	78.8	17	65.0	28	34.7	50
Missouri	89.0	6	82.1	II	68.0	21	77.5	5
Montana	85.6	24	76.4	28	59.0	36	78.0	2
Nebraska	89.3	4	82.2	10	55.0	42	70.0	19
Nevada	73.6	49	66.7	51	42.6	49	29.3	51
New Hampshire	88.2	9	76.4	28	72.0	14	73.0	10
New Jersey	90.1	2	82.7	9	74.7	8	78.8	2
New Mexico	71.0	50	66.9	50	67.4	24	61.9	31
New York	80.4	38	72.8	37	37.8	50	52.6	46
North Carolina	85.9	22	80.6	13	57.0	39	68.9	23
North Dakota	87.5	I3	71.0	40	69.0	19	68.0	25
Ohio	83.5	29	72.0	38	50.0	45	69.6	21
Oklahoma	8 l .6	36	75.9	31	58.0	37	74.4	8
Oregon	74.8	48	68.1	46	53.0	44	55.5	41
Pennsylvania	86.1	21	78.0	20	62.7	33	74.I	9
Rhode Island	82.8	31	74.8	34	74.0	9	59.0	37
South Carolina	82.6	33	87.7	I	76.0	6	52.1	47
South Dakota	83.9	28	67.0	49	57.0	39	60.0	34
Tennessee	88.5	8	85.5	3	76.0	6	71.8	16
Texas	89.1	5	86.0	2	73.7	10	77.9	4
Utah	85.2	27	75.6	32	66.0	26	70.2	18
Vermont	87.7	II	80.0	14	68.0	21	72.0	II
Virginia	86.7	20	78.1	19	45.4	47	53.9	45
Washington	79.7	40	70.2	4I	57.8	38	58.7	38
West Virginia	89.8	3	85.5	3	93.0	I	77.0	7
Wisconsin	88.2	9	77.4	24	66.0	26	68.5	24
Wyoming	80.0	39	69.1	43	70.0	18	65.0	30

[^8]Intercultural Development Research Association, 2018

Quality School Holding Power Checklist

IDRA's Quality School Holding Power Checklist provides a set of criteria for assessing and selecting effective dropout prevention programs or models, as well as determining if your school is a quality school ready to ensure all students stay in school and succeed.

The Quality School Holding Power Checklist is based on a different paradigm for preventing dropouts. For years, researchers, educators and policymakers have generally focused on "fixing" students rather than on strengthening or changing the school systems that are accountable and responsible for ensuring that children and youth succeed throughout the educational system.

Since 1973, IDRA has worked to change the focus from a deficit perspective to a valuing of all children. IDRA has led the paradigm shift from dropouts to "school holding power" - the idea that schools must hold on to students because of their inherent value, their contributions and their potential significance to their communities and society, as a whole. This shift changes a school culture from "preventing dropouts" and finding students who are "at risk," to creating a quality school culture that seeks ways to hold on to students and develops a graduation plan for each and every student. To get more information on how to create quality schools, visit http://budurl. com/IDRActc.

The checklist here is based on significant research and evaluation conducted by IDRA and others. It takes into account important factors for schools deemed at risk of losing students. Total your score and see where there is work to be done to make your school a "Quality School" with strong school holding power.

What does your score mean?

Io0-90	$89-80$	79 or lower
Strong	Moderate	Low

Key Characteristics

Dropout Prevention Strategy...

I. Has clear and aligned mission, goals and objectives.
2. Is research- or evidence-based.
3. Has evidence that students stay in school.
4. Has evidence that students' academics (grades, achievement test scores) improve.
5 Is integrated into school rhythm and culture (not add-on program).
6. Implements rigorous evaluation used for ongoing decision-making.

Teaching Quality
7. Teachers expect all students will succeed.
8. Effective professional development is provided for all teachers.
9. Teachers collaborate across grade levels and content areas.
io. Teachers are certified and competent.
iI. Teachers advocate for their students.

I2. Teachers share accountability for student success.
I3. Teachers have access to and use technology to enhance student achievement.

Student Engagement

14. Students are supported academically in effective ways.

I5. Students are recognized for their contributions in ways that do not stigmatize.
16. Students are engaged in the school and feel they belong in ways that are appropriate to their interests and that demonstrate their intelligence and uniqueness.
17. Students have an expanded vision of their future.
18. Students have one educator in their life who is totally committed to their success.
Family and Community Involvement
19. Families are valued partners in their child's education.
20. Businesses and communities partner with schools in ongoing and meaningful ways.

Curriculum Quality and Access

2I. Culturally and linguistically competent curriculum prepares all students for success, graduation, and college and career.
22 Individualized learning and support is provided when needed.
Accountable Leadership
23. School leaders are committed to all of their students' success.
24. School leaders support all of their teachers and staff in program implementation.
25. School environment is caring, supportive, predictable and safe.

Total

A Model for Success

IDRA's Quality Schools Action Framework is an empirical and practical change model that can be used to link benchmarked standards with sustainable reform. The framework uses data not only for rear-view mirror assessments but to guide strategic actions that transform schooling for all.

IDRA's "Quality Schools Action Framework speaks to the need and possibility of engaging citizens, leaders and policymakers around high quality data that call all of us as members of the community to act, to establish common ground, to strengthen education, and finally and most importantly and fundamentally, to align our values with our investments in the school system." (Robledo Montecel \& Goodman, 2010)

With two outcomes in mind - graduation and student success - IDRA's Quality Schools Action Framework is an empirically-based model that we and our partners use to shape effective, collaborative work on behalf of all children. Whether providing compelling facts ("actionable knowledge") to spur action; connecting and building capacity among school, community and coalition partners to leverage change; or promoting courageous leadership that secures educational equity and excellence, the framework speaks both to what is needed - and what is possible.

IDRA Quality Schools Action Framework ${ }^{\text {TM }}$

"We have a choice: Equal educational opportunity can remain a well-intended but unfulfilled promise, or move to becoming the engine of shared prosperity for generations of Americans. Much depends on the clarity and the urgency with which we approach the challenge."

- Dr. María "Cuca" Robledo Montecel, IDRA President and CEO, Courage to Connect: A Quality Schools Action Framework, 2010

Taking Action to Hold on to Students

Communities and their neighborhood public schools can turn the tide. We can and must guarantee that every child graduates from high school ready for college and the world of work. Strategic action to address school holding power has two key elements:

Community-based action - that reclaims neighborhood public schools, strengthens schools through school-community partnerships and holds schools and stakeholders accountable for student success.

Statewide systems change - to strengthen school holding power so all schools ensure that all children succeed and graduate. Each strategy must be informed by quality data about student outcomes and the factors that make up effective schools.

Get informed

See IDRA's latest attrition study online at: https://idra.news/IDRAatrni8w
Get the attrition rate for your county over the last seven years at:
https://idra.news/Txlook
Receive IDRA's eNews free e-letter to get up-to-date information to make a difference in your school and community. Sign up online at: https://idra.news/Subscribe

Listen to IDRA's Classnotes podcast to hear strategies for student success: https://budurl.me/Classnotes-iTunes or https://budurl.me/IDRApodcast

Get connected

Create a community-school action team to examine the factors that must be addressed to strengthen your school's holding power - its ability to hold on to students through to graduation. Use IDRA's Quality Schools Action Framework ${ }^{\mathrm{TM}}$.

IDRA's book, Courage to Connect: A Quality Schools Action Framework ${ }^{\text {TM }}$ shows how communities and schools can work together to be successful with all of their students. The book's web page (https://www.idra.org/couragetoconnect) has an excerpt, related podcasts, images of the framework and other resources.

Get results

Use IDRA's one-page School Holding Power Checklist that has a set of criteria for assessing and selecting effective dropout prevention strategies and for making sure your school is a quality school.
See Page 55 .
See what happens when a school district raises expectations for students instead of lowering them. College Bound and Determined, shows how the Pharr-San Juan Alamo school district in south Texas transformed itself from low achievement and low expectations to planning for all students to graduate from high school and college. College Bound \& Determined is available from IDRA for $\$ 15$ and is free online at: http://budurl.com/IDRAcbdw

Uncompromising Expectations for Graduating All Students

Every year, we are losing hundreds of thousands of young people from U.S. schools prior to their graduation. Eleven students are lost from public school enrollment every hour. The dropout crisis persists at tremendous cost to individual students, families, communities and the nation. We must move from a low and archaic expectation that only some of our country's students can successfully graduate from high school to a guarantee that all of our students will graduate. It is time to change course. We call upon the country to take immediate action to address this issue, based on the following principles.

Principle i: All students enrolled in U.S. schools should be expected, and must be supported, to graduate from high school with a regular high school diploma in four years.

Principle 2: At the federal level, we must create a credible system to accurately account for the educational status of every pupil who enters the ninth grade in any secondary school, including formal and verifiable student re-enrollments and transfers.

Principle 3: Using student-level longitudinal data, the United States should implement a transparent and simple methodology to count and report on high school graduates.

Principle 4: The creation of high school graduation rate data should not replace calculation and reporting of high school dropout rates that inform and guide prevention and recovery efforts.

Principle 5: Alternative education settings must be subject to the same graduation standards as all other schools.

Principle 6: In addition to using four-year graduation rates, states, school districts and schools should report annual and longitudinal dropout rates; number and percent of students who graduate in five or six years; number of in-grade retentions; number of students receiving GEDs; and students meeting all graduation requirements but not receiving a regular high school diploma because of failure to pass a statelevel high-stakes exam.

Principle 7: High school graduation and dropout data should be reported at the federal, state, district and school levels and should be disaggregated by race, ethnicity, socio-economic and English language learner status.

Principle 8: Exemptions from graduation and dropout counting must be strictly limited and must conform to IDEA provisions.

Principle 9: Reporting should be readily available and easily accessible to the public. Reporting must directly inform communities and parents about status of the issue and progress being made to address it.

Principle 10: State and local progress requirements should be proportional to the graduation rate gap to be closed.

Principle II: State efforts to address high school graduation rates should recognize systemic issues that affect student graduation, including teaching quality, curriculum quality and access, student engagement, and parent and community engagement.

Principle 12: Ongoing evaluation of progress must be an integral part of any effort at the federal, state and local levels to address graduation goals.

Principle 13: In ensuring that all students graduate, schools should incorporate pedagogical changes that enable them to better adapt to the needs and strengths of their students.

Principle 14: No single criterion (e.g., high-stakes testing) should be used to make high school graduation decisions for any individual student.

Principle 15: The federal level and states must acknowledge shared accountability for the graduation of all students by investing the personnel and equitable fiscal resources needed to help schools meet federally-established graduation targets.

Principle 16: All efforts to increase graduation rates must be based on valuing families, educators, communities and students; no response should promote a "deficit model" or blame.

Principle 17: It is vital to recognize that this issue affects students of all races and ethnicities (for example, the largest numbers of dropouts in many states are White students).

Principle 18: Since low graduation rates disproportionately impact racial and ethnic minority students, accelerated efforts to address the issue in these communities is essential.

What We Have Learned

Anchored in IDRA's experience, Continuities: Lessons for the Future of Education from the IDRA Coca-Cola Valued Youth Program, captures seven key lessons for improving the quality of education for all students. It was released on the occasion of the 25 th anniversary of the Coca-Cola Valued Youth Program and in celebration of its success in keeping tens of thousands of students in school and positively impacting more than half a
 million children, families and educators on three continents.
I. Valuing Youth Works. If you provide young people with an opportunity to contribute - to themselves, their families, their communities they will.
2. Local Ownership is Key. To scale up and replicate success requires holding fast to essentials while adapting to local contexts.
3. School Leadership Sets the Tone. To squarely take on attrition, school leaders must inspire innovation, embody engagement, and incorporate actionable knowledge.
4. Realizing the Power of One + One + One. All students must have at least one caring adult in their lives at school and a reason to care.
5. Family and Community Engagement is Essential. The school-family-community triad is at the heart of holding on to students and ensuring their success.
6. Success Demands Well-Defined Partnerships. When roles are clear and each partner contributes from its unique strengths, a multi-sector collaboration can reap dramatic results.
7. Structure and Innovation Sustains Impact. Transformative impact demands sustained structures, resources and a commitment to valuing all youth.

[^9]
Types of Dropout Data Defined

The U.S. Department of Education's National Center for Education Statistics (NCES) is the principal federal agency responsible for the collection, analysis and reporting of data on the condition of education in the United States. Dropout data from NCES examines rates within racial and ethnic groups, across gender groups, and across states and geographical regions. NCES defines the various types of dropout rates as stated below. The five NCES rates (the averaged freshman graduation rate, adjusted cohort graduation rate, the event dropout rate, the status dropout rate, and the status school completion rate) and along with other traditional measures, such as the attrition rate and cohort dropout rates, provide unique information about high school dropouts, completers and graduates. Different states use various measures. The Texas Education Agency reports an annual dropout rate; longitudinal graduation, completion and dropout rates and attrition rate.

Though each rate has different meaning and calculation methods, each provides unique information that is important for assessing schools' quality of education and school holding power. Within these types of data are underlying questions of who is included in the data pool. For example, are students who drop out to earn a GED counted as dropouts? Are students who complete their coursework but are denied a diploma for failing to pass a state exit exam counted as dropouts?

Averaged Freshman Graduation Rate

Averaged freshman graduation rates describe the proportion of high school freshmen who graduate with a regular diploma four years after starting ninth grade. This rate measures the extent to which schools are graduating students on time. The first school year for which NCES provides averaged freshman graduation rates is 2001-02.

$10^{\text {th }}$ Grade

those who move in to or out of the school (or leave for other reasons or who pass away)

Event Dropout Rate (or Annual Dropout Rate)

Event dropout rates describe the percentage of private and public high school students who left high school in a particular year (between the beginning of one school year and the beginning of the next) without earning a high school diploma or its equivalent. This rate is also referred to as an annual dropout rate. The Texas Education Agency reports the event rate (in addition to other rates). Definitions for TEA rates can be found on the TEA website.

Types of Dropout Data Defined (continued)

Status Dropout Rate

Status dropout rates provide cumulative data on dropouts among young adults within a specified age range (usually: 15 to 24 years of age, 16 to 24 years of age, or 18 to 24 years of age). They measure the percentage of individuals who are not in school and have not earned ahigh school diploma or equivalency, irrespective of when they dropped out. These rates, which are higher than event rates because they include all dropouts, reveal the extent of the dropout problem in the population. (This rate focuses on an overall age group or cohort rather than on individuals.)

How many of a certain age aren't in school and do not have a diploma or GED

Status Completion Rate

High school status completion rates describe the proportion of individuals in a given age range who are not in high school and who have earned a high school diploma or equivalency credential (namely the GED certificate), irrespective of when the credential was earned. (This rate also is referred to as the "school completion rate" as

How many of a certain age aren't in school and do have a diploma or GED the positive way of expressing the status dropout rate.)

Attrition Rate

Attrition rates measure the number of students lost from enrollment between two points in time (e.g., ninth grade and $12^{\text {th }}$ grade enrollment four years later). Attrition data are similar to cohort data. Each year for the state of Texas, TEA reports simple attrition rates, while IDRA reports adjusted attrition rates (that account for fluctuations in school enrollment and in and out migration).

Cohort Rate

Cohort rates measure what happens to a cohort of students over a period of time. These rates provide repeated measures of a group of students starting at a specific grade level over time. These measures provide longitudinal data on a specific group of students, including background and contextual data.

Graduation Rate

Graduation rates measure the percentage of students from a class of beginning seventh or ninth graders who graduate with a high school diploma.

This page intentionally blank

This page intentionally blank

Get education news from IDRA
https://idra.news/Subscribe

Twitter
twitter.com/idraedu
Flickr
flickr.com/idraedu
You
Tuhe

YouTube
Pinterest
pinterest.com/idraedu

Children First
Transforming Education

[^0]: * Rounded to nearest whole number.

 Figures calculated by IDRA from Texas Education Agency Fall Membership Survey data.
 Intercultural Development Research Association, 2018

[^1]: Figures calculated by IDRA from Texas Education Agency Fall Membership Survey data.

 * Calculation of attrition could not be achieved without corresponding first-year data. Intercultural Development Research Association, 2018 N/A = Not applicable

[^2]: Source: Intercultural Development Research Association, 2018

[^3]: College Bound \& Determined is available from IDRA for \$15 and is free online at: http://budurl.com/IDRAcbdw

[^4]: Data Source: Texas Education Agency, Office of Academics, Division of Research and Analysis, Enrollment in Texas Public Schools, 2017-18 Intercultural Development Research Association, 2018

[^5]: Data source: Texas Education Agency, Secondary School Completion and Dropouts in Texas Public Schools, 20II-I2 to

[^6]: Data Source: Texas Education Agency, Secondary School Completion and Dropouts in Texas Public Schools, Classes of 2012 to 2017
 Intercultural Development Research Association, 2018

[^7]: Not available NR - Not Ranked

[^8]: Data source: U.S. Department of Education. (February 20, 2088). Digest of Education Statistics 2016: 52nd Edition, 2010-II through 2015-16

[^9]: "We looked around the world, to find the very best [educational] programs. After analyzing some 20 different programs with the advice of a group of educators... we decided that this program was the one because it could result in the greatest improvement for education in our country. Then... we saw so many lives change."

 - Marco Simões, Coca-Cola Brazil, Rio de Janeiro, 2009

